We experimentally demonstrate a 400 Gbit/s optical communication link utilizing wavelength-division multiplexing and mode-division multiplexing for a total of 40 channels. This link utilizes a novel, to the best of our knowledge, 400 GHz frequency comb source based on a chip-scale photonic crystal resonator. Silicon-on-insulator photonic inverse-designed 4 × 4 mode-division multiplexer structures enable a fourfold increase in data capacity. We show less than −10 dBm of optical receiver power for error-free data transmission in 34 out of a total of 40 channels using a PRBS31 pattern.
more »
« less
Low-crosstalk mode-group demultiplexers based on Fabry-Perot thin-film filters
Mode-group multiplexing (MGM) can increase the capacity of short-reach few-mode optical fiber communication links while avoiding complex digital signal processing. In this paper, we present the design and experimental demonstration of a novel mode-group demultiplexer (MG DeMux) using Fabry-Perot (FP) thin-film filters (TFFs). The MG DeMux supports low-crosstalk mode-group demultiplexing, with degeneracies commensurate with those of graded-index (GRIN) multimode fibers. We experimentally demonstrate this functionality by using a commercial six-cavity TFF that was intended for 100 GHz channel spaced wavelength-division multiplexing (WDM) system.
more »
« less
- Award ID(s):
- 1932858
- PAR ID:
- 10373672
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Optics Express
- Volume:
- 30
- Issue:
- 22
- ISSN:
- 1094-4087; OPEXFF
- Format(s):
- Medium: X Size: Article No. 39258
- Size(s):
- Article No. 39258
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Spatial-spectral holographic signal processing in cryogenically-cooled spectral-hole burning crystals allows modal-dispersion compensation of multiple orthogonally launched beams to enable wide- band mode-group multiplexing and demultiplexing in spatially-multiplexed multimode fiber networks.more » « less
-
Abstract Terahertz (THz) communication is an up‐and‐coming technology for the sixth‐generation wireless network. The realization of ultra‐high‐speed THz communication requires the combination of multi‐dimensional multiplexing schemes, including polarization division multiplexing (PDM), mode division multiplexing (MDM), and wavelength division multiplexing, to increase channel capacity. However, most existing devices for MDM in the THz regime are single‐purpose and incapable of multi‐dimensional modulation. Here, all‐dielectric metasurfaces are designed for 2D multiplexing/demultiplexing, which takes the lead in combining orbital angular momentum (OAM) MDM and PDM in the THz regime. The multi‐functional wavefront phase modulations and interleaved meta‐atom arrangements are used to realize polarization‐selective multichannel OAM mode (de)multiplexing, in which the linear‐polarized 4‐channel and circular‐polarized 6‐channel demultiplexing are experimentally demonstrated. Between different linear‐polarized channels, the measured maximum crosstalk is −16.88 dB, and the isolation of each channel can be greater than 10 dB in a range wider than 0.1 THz. This study paves the way for multi‐dimensional multiplexing in the THz regime, which may benefit extremely high‐capacity and integrated THz communication systems. The proposed design strategy is readily applied to multi‐functional metasurfaces for microwaves and far infrared light, facilitating the development of multiplexing technology and OAM‐related applications.more » « less
-
Description / Abstract: In order to effectively provide INaaS (Inference-as-a-Service) for AI applications in resource-limited cloud environments, two major challenges must be overcome: achieving low latency and providing multi-tenancy. This paper presents EIF (Efficient INaaS Framework), which uses a heterogeneous CPU-FPGA architecture to provide three methods to address these challenges (1) spatial multiplexing via software-hardware co-design virtualization techniques, (2) temporal multiplexing that exploits the sparsity of neural-net models, and (3) streaming-mode inference which overlaps data transfer and computation. The prototype EIF is implemented on an Intel PAC (shared-memory CPU-FPGA) platform. For evaluation, 12 types of DNN models were used as benchmarks, with different size and sparsity. Based on these experiments, we show that in EIF, the temporal multiplexing technique can improve the user density of an AI Accelerator Unit from 2$$\times$$ to 6$$\times$$, with marginal performance degradation. In the prototype system, the spatial multiplexing technique supports eight AI Accelerators Unit on one FPGA. By using a streaming mode based on a Mediated Pass-Through architecture, EIF can overcome the FPGA on-chip memory limitation to improve multi-tenancy and optimize the latency of INaaS. To further enhance INaaS, EIF utilizes the MapReduce function to provide a more flexible QoS. Together with the temporal/spatial multiplexing techniques, EIF can support 48 users simultaneously on a single FPGA board in our prototype system. In all tested benchmarks, cold-start latency accounts for only approximately 5\% of the total response time.more » « less
An official website of the United States government
