The terahertz regime is widely recognized as a fundamental domain with significant potential to address the demands of next-generation wireless communications. In parallel, mode division multiplexing based on orbital angular momentum (OAM) shows promise in enhancing bandwidth utilization, thereby expanding the overall communication channel capacity. In this study, we present both theoretical and experimental demonstrations of an on-chip terahertz OAM demultiplexer. This device effectively couples and steers seven incident terahertz vortex beams into distinct high-quality focusing surface plasmonic beams, and the focusing directions can be arbitrarily designated. The proposed design strategy integrates space-to-chip mode conversion, OAM recognition, and on-chip routing in a compact space with subwavelength thickness, exhibiting versatility and superior performance.
This content will become publicly available on August 1, 2025
Terahertz (THz) communication is an up‐and‐coming technology for the sixth‐generation wireless network. The realization of ultra‐high‐speed THz communication requires the combination of multi‐dimensional multiplexing schemes, including polarization division multiplexing (PDM), mode division multiplexing (MDM), and wavelength division multiplexing, to increase channel capacity. However, most existing devices for MDM in the THz regime are single‐purpose and incapable of multi‐dimensional modulation. Here, all‐dielectric metasurfaces are designed for 2D multiplexing/demultiplexing, which takes the lead in combining orbital angular momentum (OAM) MDM and PDM in the THz regime. The multi‐functional wavefront phase modulations and interleaved meta‐atom arrangements are used to realize polarization‐selective multichannel OAM mode (de)multiplexing, in which the linear‐polarized 4‐channel and circular‐polarized 6‐channel demultiplexing are experimentally demonstrated. Between different linear‐polarized channels, the measured maximum crosstalk is −16.88 dB, and the isolation of each channel can be greater than 10 dB in a range wider than 0.1 THz. This study paves the way for multi‐dimensional multiplexing in the THz regime, which may benefit extremely high‐capacity and integrated THz communication systems. The proposed design strategy is readily applied to multi‐functional metasurfaces for microwaves and far infrared light, facilitating the development of multiplexing technology and OAM‐related applications.
more » « less- Award ID(s):
- 2114103
- PAR ID:
- 10538223
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Laser & Photonics Reviews
- Volume:
- 18
- Issue:
- 8
- ISSN:
- 1863-8880
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Mode-group multiplexing (MGM) can increase the capacity of short-reach few-mode optical fiber communication links while avoiding complex digital signal processing. In this paper, we present the design and experimental demonstration of a novel mode-group demultiplexer (MG DeMux) using Fabry-Perot (FP) thin-film filters (TFFs). The MG DeMux supports low-crosstalk mode-group demultiplexing, with degeneracies commensurate with those of graded-index (GRIN) multimode fibers. We experimentally demonstrate this functionality by using a commercial six-cavity TFF that was intended for 100 GHz channel spaced wavelength-division multiplexing (WDM) system.
-
Sub-Terahertz (THz) frequencies between 100 GHz and 300 GHz are being considered as a key enabler for the sixthgeneration (6G) wireless communications due to the vast amounts of unused spectrum. The 3rd Generation Partnership Project (3GPP) included the indoor industrial environments as a scenario of interest since Release 15. This paper presents recent sub- THz channel measurements using directional horn antennas of 27 dBi gain at 142 GHz in a factory building, which hosts equipment manufacturing startups. Directional measurements with copolarized and cross-polarized antenna configurations were conducted over distances from 6 to 40 meters. Omnidirectional and directional path loss with two antenna polarization configurations produce the gross cross-polarization discrimination (XPD) with a mean of 27.7 dB, which suggests that dual-polarized antenna arrays can provide good multiplexing gain for sub-THz wireless systems. The measured power delay profile and power angular spectrum show the maximum root mean square (RMS) delay spread of 66.0 nanoseconds and the maximum RMS angular spread of 103.7 degrees using a 30 dB threshold, indicating the factory scenario is a rich-scattering environment due to a massive number of metal structures and objects. This work will facilitate emerging sub-THz applications such as super-resolution sensing and positioning for future smart factories.more » « less
-
The orbital angular momentum (OAM) intrinsically carried by vortex light beams holds a promise for multidimensional high-capacity data multiplexing, meeting the ever-increasing demands for information. Development of a dynamically tunable OAM light source is a critical step in the realization of OAM modulation and multiplexing. By harnessing the properties of total momentum conservation, spin-orbit interaction, and optical non-Hermitian symmetry breaking, we demonstrate an OAM-tunable vortex microlaser, providing chiral light states of variable topological charges at a single telecommunication wavelength. The scheme of the non–Hermitian-controlled chiral light emission at room temperature can be further scaled up for simultaneous multivortex emissions in a flexible manner. Our work provides a route for the development of the next generation of multidimensional OAM-spin-wavelength division multiplexing technology.more » « less
-
Many physical-layer security works in the literature rely on purely theoretical work or simulated results to establish the value of physical-layer security in securing communications. We consider the secrecy capacity of a wireless Gaussian wiretap channel using channel sounding measurements to analyze the potential for secure communication in a real-world scenario. A multi-input, multi-output, multi-eavesdropper (MIMOME) system is deployed using orthogonal frequency division multiplexing (OFDM) over an 802.11n wireless network. Channel state information (CSI) measurements were taken in an indoor environment to analyze time-varying scenarios and spatial variations. It is shown that secrecy capacity is highly affected by environmental changes, such as foot traffic, network congestion, and propagation characteristics of the physical environment. We also present a numerical method for calculating MIMOME secrecy capacity in general and comment on the use of OFDM with regard to calculating secrecy capacity.