skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Modeling Equatorial F ‐Region Ionospheric Instability Using a Regional Ionospheric Irregularity Model and WAM‐IPE
Abstract This paper uses a regional simulation of plasma convective instability in the postsunset equatorial ionosphere together with a global atmosphere/ionosphere/plasmasphere GCM (WAM‐IPE) to forecast irregularities associated with equatorial spreadF(ESF) for 1–2 hr after sunset. First, the regional simulation is initialized and forced using ionosphere state parameters derived from campaign data from the Jicamarca Radio Observatory and from empirical models. The irregularities produced by these simulations are found to be quantitatively similar to those observed. Next, the aforementioned state parameters are replaced with parameters from WAM‐IPE, and the resulting departures between the simulated and observed irregularities are noted. In one of five cases, the forecast failed to accurately predict ESF irregularities due to the late reversal of the zonal thermospheric winds. In four of five cases, significant differences between the observed and predicted prereversal enhancement (PRE) of the background vertical drifts resulted in degraded forecast accuracy. This highlights the need for improved PRE forecasting in the global‐scale model.  more » « less
Award ID(s):
1732209 2028032
PAR ID:
10373771
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Volume:
127
Issue:
9
ISSN:
2169-9380
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A three-dimensional, regional simulation is used to investigate ionospheric plasma density irregularities associated with Equatorial Spread F. This simulation is first driven with background electric fields derived from ISR observations. Next, the simulation is driven with electric fields taken from the WAM-IPE global model. The discrepancies between the two electric fields, particularly in the evening prereversal enhancement, produce disagreeing simulation results. The WAM-IPE electric fields are then studied through a simple sensitivity analysis of a field-line integrated electrodynamics model similar to the one used in WAM-IPE. This analysis suggests there is no simple tuning of ion composition or neutral winds that accurately reproduce ISR-observed electric fields on a day-to-day basis. Additionally, the persistency of the prereversal enhancement structure over time is studied and compared to measurements from the ICON satellite. These results suggest that WAM-IPE electric fields generally have a shorter and more variable correlation time than those measured by ICON. 
    more » « less
  2. Abstract Measurements from the Ionospheric Connections Explorer satellite (ICON) form the basis of direct numerical forecast simulations of plasma convective instability in the postsunset equatorialFregion ionosphere. ICON data are selected and used to initialize and force the simulations and then to test the results one orbit later when the satellite revisits the same longitude. Data from the IVM plasma density and drifts instrument and the MIGHTI red‐line thermospheric winds instrument are used to force the simulation. Data from IVM are also used to test for irregularities (electrically polarized plasma depletions). Fourteen datasets from late March 2022, were examined. The simulations correctly predicted the occurrence or non‐occurrence of irregularities 12 times while producing one false positive and one false negative. This demonstrates that the important telltales of instability are present in the ICON state variables and that the important mechanisms for irregularity formation are captured by the simulation code. Possible refinements to the forecast strategy are discussed. 
    more » « less
  3. Abstract The numerical forecast methods used to predict ionospheric convective plasma instabilities associated with Equatorial Spread‐F(ESF) have limited accuracy and are often computationally expensive. We test whether it is possible to bypass first‐principle numeric simulations and forecast irregularities using machine learning models. The data are obtained from the incoherent scatter radar at the Jicamarca Radio Observatory located in Lima, Peru. Our models map vertical plasma drifts, time, and solar activity to the occurrence and location of clusters of echoes telltale of ionospheric irregularities. Our results show that these models are capable of identifying the predictive power of the tested inputs, obtaining accuracies around 75%. 
    more » « less
  4. Low Earth orbit (LEO) radio occultation|radio occultations (RO) constellations can provide global electron density profiles (EDPs) to better specify and forecast the ionosphere‐thermosphere (I‐T) system. To inform future RO constellation design, this study uses comprehensive Observing System Simulation Experiments (OSSEs) to assess the ionospheric specification impact of assimilating synthetic EDPs into a coupled I‐T model. These OSSEs use 10 different sets of RO constellation configurations containing 6 or 12 LEO satellites with base orbit parameter combinations of 520 or 800 km altitude, and 24° or 72° inclination. The OSSEs are performed using the Ensemble Adjustment Kalman Filter implemented in the data assimilation (DA) Research Testbed and the Thermosphere‐Ionosphere‐Electrodynamics General Circulation Model (TIEGCM). A different I‐T model is used for the nature run, the Whole Atmosphere Model‐Ionosphere Plasmasphere Electrodynamics (WAM‐IPE), to simulate the period of interest is the St. Patrick's Day storm on March 13–18, 2015. Errors from models and EDP retrieval are realistically accounted for in this study through distinct I‐T models and by retrieving synthetic EDPs through an extension Abel inversion algorithm. OSSE assessment, using multiple metrics, finds that greater EDP spatial coverage leading to improved specification at altitudes 300 km and above, with the 520 km altitude constellations performing best due to yielding the highest observation counts. A potential performance limit is suggested with two 6‐satellite constellations. Lastly, close examination of Abel inversion error impacts highlights major EDP limitations at altitudes below 200 km and dayside equatorial regions with large horizontal gradients and low electron density magnitudes. 
    more » « less
  5. Abstract We report the first results of a global ionosphere/thermosphere simulation study that self‐consistently generates large‐scale equatorial spreadF(ESF) plasma bubbles in the postsunset ionosphere. The coupled model comprises the ionospheric code SAMI3 and the atmosphere/thermosphere code WACCM‐X. Two cases are modeled for different seasons and geophysical conditions: the March case (low solar activity: F10.7 = 70) and the July case (high solar activity: F10.7 = 170). We find that equatorial plasma bubbles formed and penetrated into the topsideFlayer for the March case but not the July case. For the March case, a series of bubbles formed in the Atlantic sector with irregularity spacings in the range 400–1,200 km, rose to over 800 km, and persisted until after midnight. These results are consistent with recent GOLD observations. Calculation of the generalized Rayleigh‐Taylor instability (GRTI) growth rate shows that the e‐folding time was shorter for the March case than the July case. 
    more » « less