skip to main content


Title: S2S Prediction in GFDL SPEAR: MJO Diversity and Teleconnections
Abstract A subseasonal-to-seasonal (S2S) prediction system was recently developed using the GFDL Seamless System for Prediction and Earth System Research (SPEAR) global coupled model. Based on 20-yr hindcast results (2000–19), the boreal wintertime (November–April) Madden–Julian oscillation (MJO) prediction skill is revealed to reach 30 days measured before the anomaly correlation coefficient of the real-time multivariate (RMM) index drops to 0.5. However, when the MJO is partitioned into four distinct propagation patterns, the prediction range extends to 38, 31, and 31 days for the fast-propagating, slow-propagating, and jumping MJO patterns, respectively, but falls to 23 days for the standing MJO. A further improvement of MJO prediction requires attention to the standing MJO given its large gap with its potential predictability (38 days). The slow-propagating MJO detours southward when traversing the Maritime Continent (MC), and confronts the MC prediction barrier in the model, while the fast-propagating MJO moves across the central MC without this prediction barrier. The MJO diversity is modulated by stratospheric quasi-biennial oscillation (QBO): the standing (slow-propagating) MJO coincides with significant westerly (easterly) phases of QBO, partially explaining the contrasting MJO prediction skill between these two QBO phases. The SPEAR model shows its capability, beyond the propagation, in predicting their initiation for different types of MJO along with discrete precursory convection anomalies. The SPEAR model skillfully predicts the observed distinct teleconnections over the North Pacific and North America related to the standing, jumping, and fast-propagating MJO, but not the slow-propagating MJO. These findings highlight the complexities and challenges of incorporating MJO prediction into the operational prediction of meteorological variables.  more » « less
Award ID(s):
2025057
NSF-PAR ID:
10373940
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; « less
Date Published:
Journal Name:
Bulletin of the American Meteorological Society
Volume:
103
Issue:
2
ISSN:
0003-0007
Page Range / eLocation ID:
E463 to E484
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The impact of the quasi‐biennial oscillation (QBO) on the prediction of tropical intraseasonal convection, including the Madden Julian Oscillation (MJO) and Boreal Summer Intraseasonal Oscillation (BSISO), is assessed in the WMO Subseasonal to Seasonal (S2S) forecast database using the real‐time OLR based MJO (ROMI) index. It is shown that the ROMI prediction skill for the boreal winter MJO, measured by the maximum time at which the anomaly correlation coefficient exceeds 0.6, is higher by 5 to 10 days in the QBO easterly phase than its westerly phase. This difference occurs even in models with low tops and poorly resolved stratospheres. MJO predictability, as measured by signal to noise ratio in the S2S ensemble, also shows a similar difference between the two QBO phases, and results from a simple linear regression model show consistent behavior as well. Analysis of the ROMI index derived from observations indicates that the MJO is more coherent and stronger in the QBO easterly phase than in the westerly phase. These results suggest that the skill dependence on QBO phase results from the initial state of the MJO, the regularity of its propagation in the verifying observations, or most likely a combination of the two, but not on an actual stratospheric influence on the MJO within the model simulations. In contrast to the robust QBO‐MJO connection in boreal winter, the BSISO prediction skill exhibited by the S2S models in boreal summer is greater in the QBOwesterlyphase than in theeasterlyphase during the 1999 to 2010 period. This is consistent with the observation that BSISO OLR anomalies are stronger in the QBO westerly phase during that period. However, this relationship between the QBO and BSISO in boreal summer changes in recent decades: BSISO is weaker in QBO westerly than easterly during 1979–2000. Correspondingly, the QBO impact on BSISO prediction in boreal summer also reverses in that period as well in a statistical model, whereas this statistical model shows a consistent QBO impact on MJO prediction in boreal winter over the past four decades.

     
    more » « less
  2. Abstract

    Studies have indicated exaggerated Maritime Continent (MC) barrier effect in simulations of the Madden–Julian oscillation (MJO), a dominant source of subseasonal predictability in the tropics. This issue has plagued the modeling and operational forecasting communities for decades, while the sensitivity of MC barrier on MJO predictability has not been addressed quantitatively. In this study, perfect-model ensemble forecasts are conducted with an aquaplanet configuration of the Community Earth System Model version 2 (CESM2) in which both basic state and tropical modes of variability are reasonably simulated with a warm pool–like SST distribution. When water-covered terrain mimicking MC landmasses is added to the warm pool–like SST framework, the eastward propagation of the MJO is disturbed by the prescribed MC aqua-mountain. The MJO predictability estimate with the perfect-model experiment is about 6 weeks but reduces to about 4 weeks when the MJO is impeded by the MC aqua-mountain. Given that the recent operational forecasts show an average of 3–4 weeks of MJO prediction skill, we can conclude that improving the MJO propagation crossing the MC could improve the MJO skill to 5–6 weeks, close to the potential predictability found in this study (6 weeks). Therefore, more effort toward understanding and improving the MJO propagation is needed to enhance the MJO and MJO-related forecasts to improve the subseasonal-to-seasonal prediction.

     
    more » « less
  3. null (Ed.)
    Abstract Although useful at short and medium ranges, current dynamical models provide little additional skill for precipitation forecasts beyond week 2 (14 days). However, recent studies have demonstrated that downstream forcing by the Madden–Julian oscillation (MJO) and quasi-biennial oscillation (QBO) influences subseasonal variability, and predictability, of sensible weather across North America. Building on prior studies evaluating the influence of the MJO and QBO on the subseasonal prediction of North American weather, we apply an empirical model that uses the MJO and QBO as predictors to forecast anomalous (i.e., categorical above- or below-normal) pentadal precipitation at weeks 3–6 (15–42 days). A novel aspect of our study is the application and evaluation of the model for subseasonal prediction of precipitation across the entire contiguous United States and Alaska during all seasons. In almost all regions and seasons, the model provides “skillful forecasts of opportunity” for 20%–50% of all forecasts valid weeks 3–6. We also find that this model skill is correlated with historical responses of precipitation, and related synoptic quantities, to the MJO and QBO. Finally, we show that the inclusion of the QBO as a predictor increases the frequency of skillful forecasts of opportunity over most of the contiguous United States and Alaska during all seasons. These findings will provide guidance to forecasters regarding the utility of the MJO and QBO for subseasonal precipitation outlooks. 
    more » « less
  4. Abstract

    Boreal summer intraseasonal oscillation (BSISO) is a primary source of predictability for summertime weather and climate on the subseasonal-to-seasonal (S2S) time scale. Using the GFDL SPEAR S2S prediction system, we evaluate the BSISO prediction skills based on 20-yr (2000–19) hindcast experiments with initializations from May to October. It is revealed that the overall BSISO prediction skill using all hindcasts reaches out to 22 days as measured by BSISO indices before the bivariate anomalous correlation coefficient (ACC) drops below 0.5. Results also show that the northeastward-propagating canonical BSISO (CB) event has a higher prediction skill than the northward dipole BSISO (DB) event (28 vs 23 days). This is attributed to CB’s more periodic nature, resulting in its longer persistence, while DB events are more episodic accompanied by a rapid demise after reaching maximum enhanced convection over the equatorial Indian Ocean. From a forecaster’s perspective, a precursory strong Kelvin wave component in the equatorial western Pacific signifies the subsequent development of a CB event, which is likely more predictable. Investigation of individual CB events shows a large interevent spread in terms of their prediction skills. For CB, the events with weaker and fluctuating amplitude during their lifetime have relatively lower prediction skills likely linked to their weaker convection–circulation coupling. Interestingly, the prediction skills of individual CB events tend to be relatively higher and less scattered during late summer (August–October) than those in early summer (May–July), suggestive of the seasonal modulation on the evolution and predictability of BSISO.

    Significance Statement

    The advance of subseasonal-to-seasonal (S2S) prediction largely depends on dynamical models’ ability to predict some major intrinsic modes in the climate system, including the boreal summer intraseasonal oscillation (BSISO). Using a newly developed S2S prediction system, we thoroughly evaluated its performance in predicting BSISO, and revealed the skill dependence on the BSISO propagation diversity. Here we provide physical explanations of what influences the BSISO predictions and identify different precursory signals for two types of BSISO, which have important implications for operational forecasts.

     
    more » « less
  5. The tropical Madden–Julian oscillation (MJO) excites a northward propagating Rossby wave train that largely determines the extratropical surface weather consequences of the MJO. Previous work has demonstrated a significant influence of the tropospheric El Niño–Southern Oscillation (ENSO) on the characteristics of this wave train. Here, composite analyses of ERA-Interim sea level pressure (SLP) and surface air temperature (SAT) data during the extended northern winter season are performed to investigate the additional role of stratospheric forcings [the quasi-biennial oscillation (QBO) and the 11-yr solar cycle] in modifying the wave train and its consequences. MJO phase composites of 20–100-day filtered data for the two QBO phases show that, similar to the cool phase of ENSO, the easterly phase of the QBO (QBOE) produces a stronger wave train and associated modulation of SLP and SAT anomalies. In particular, during MJO phases 5–7, positive SLP and negative SAT anomalies in the North Atlantic/Eurasian sector are enhanced during QBOE relative to the westerly phase of the QBO (QBOW). The opposite occurs during the earliest MJO phases. SAT anomalies over eastern North America are also more strongly modulated during QBOE. Although less certain because of the short data record, there is some evidence that the minimum phase of the solar cycle (SMIN) produces a similar increased modulation of SLP and SAT anomalies. The strongest modulations of SLP and SAT anomalies are produced when two or more of the forcings are superposed (e.g., QBOE/cool ENSO, SMIN/QBOE, etc.). 
    more » « less