Abstract Coastal communities are increasingly vulnerable to hurricanes, which cause billions of dollars in damage annually through wind, storm surge, and flooding. Mitigation efforts are essential to reduce these impacts but face significant challenges, including uncertainties in hazard prediction, damage estimation, and recovery costs. Resource constraints and the disproportionate burden borne by socioeconomically vulnerable groups further complicate retrofitting strategies. This study presents a probabilistic methodology to assess and mitigate hurricane risks by integrating hazard analysis, building fragility, and economic loss assessment. The methodology prioritizes retrofitting strategies using a risk‐informed, equity‐focused approach. Multi‐objective optimization balances cost‐effectiveness and risk reduction while promoting fair resource allocation among socioeconomic groups. The novelty of this study lies in its direct integration of equity as an objective in resource allocation through multi‐objective optimization, its comprehensive consideration of multi‐hazard risks, its inclusion of both direct and indirect losses in cost assessments, and its use of probabilistic hazard analysis to incorporate varying time horizons. A case study of the Galveston testbed demonstrates the methodology's potential to minimize damage and foster equitable resilience. Analysis of budget scenarios and trade‐offs between cost and equity underscores the importance of comprehensive loss assessments and equity considerations in mitigation and resilience planning. Key findings highlight the varied effectiveness of retrofitting strategies across different budgets and time horizons, the necessity of addressing both direct and indirect losses, and the importance of multi‐hazard considerations for accurate risk assessments. Multi‐objective optimization underscores that equitable solutions are achievable even under constrained budgets. Beyond a certain point, achieving equity does not necessarily increase expected losses, demonstrating that more equitable solutions can be implemented without compromising overall cost‐effectiveness.
more »
« less
Probabilistic Multi-Objective Inverse Analysis for Damage Identification Using Piezoelectric Impedance Measurement Under Uncertainties
Piezoelectric impedance sensing is promising for highly accurate damage identification because of its high-frequency active interrogative nature and simplicity in data acquisition. To fully unleash the potential, effective inverse analysis is needed in order to pinpoint the damage location and identify the severity. The inverse analysis, however, may be underdetermined since there exists a very large number of unknowns (i.e., locations and severity levels) to be solved in a finite element model but only limited measurements are available in actual practice. To uncover the true damage scenario, an inverse analysis strategy built upon the multi-objective optimization, which aims at matching the multiple sets of measurements with model predictions in the damage parametric space, can be formulated to identify a small set of solutions. This solution set then allows the incorporation of empirical knowledge to facilitate final decision-making. The main disadvantage of the conventional inverse analysis strategy is that it overlooks uncertainties that exist in both baseline structural modeling and actual measurements. To address this, in this research, we formulate a probabilistic multi-objective optimization-based inverse analysis framework, which is fundamentally built upon the differential evolution Markov chain Monte Carlo (DEMC) technique. The new approach can yield the Pareto optimal set (solutions) and the respective Pareto front, which are represented in a probabilistic sense to account for uncertainties. Comprehensive case studies with experimental investigations are conducted to demonstrate the effectiveness of this new approach.
more »
« less
- PAR ID:
- 10373945
- Date Published:
- Journal Name:
- Frontiers in Built Environment
- Volume:
- 8
- ISSN:
- 2297-3362
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Electromechanical impedance-based (EMI) techniques using piezoelectric transducers are promising for structural damage identification. They can be implemented in high frequency range with small characteristic wavelengths, leading to high detection sensitivity. The impedance measured is the outcome of harmonic and stationary excitation, which makes it easier to conduct inverse analysis for damage localization and quantification. Nevertheless, the EMI data measurement points are usually limited, thus oftentimes resulting in an under-determined problem. To address this issue, damage identification process can be converted into a multi-objective optimization formulation which naturally yields multiple solutions. While this setup fits the nature of damage identification that a number of possibilities may exist under given observations/measurements, existing algorithms may suffer from premature convergence and entrapment in local extremes. Consequently, the solutions found may not cover the true damage scenario. To tackle these challenges, in this research, a series of local search strategies are tailored to enhance the global searching ability and incorporated into particle swarm-based optimization. The Q-table is utilized to help the algorithm select proper local search strategy based on the maximum Q-table values. Case studies are carried out for verification, and the results show that the proposed memetic algorithm achieves good performance in damage identification.more » « less
-
We consider the problem of multi-objective optimization (MOO) of expensive black-box functions with the goal of discovering high-quality and diverse Pareto fronts where we are allowed to evaluate a batch of inputs. This problem arises in many real-world applications including penicillin production where diversity of solutions is critical. We solve this problem in the framework of Bayesian optimization (BO) and propose a novel approach referred to as Pareto front-Diverse Batch Multi-Objective BO (PDBO). PDBO tackles two important challenges: 1) How to automatically select the best acquisition function in each BO iteration, and 2) How to select a diverse batch of inputs by considering multiple objectives. We propose principled solutions to address these two challenges. First, PDBO employs a multi-armed bandit approach to select one acquisition function from a given library. We solve a cheap MOO problem by assigning the selected acquisition function for each expensive objective function to obtain a candidate set of inputs for evaluation. Second, it utilizes Determinantal Point Processes (DPPs) to choose a Pareto-front-diverse batch of inputs for evaluation from the candidate set obtained from the first step. The key parameters for the methods behind these two steps are updated after each round of function evaluations. Experiments on multiple MOO benchmarks demonstrate that PDBO outperforms prior methods in terms of both the quality and diversity of Pareto solutions.more » « less
-
Issues of fairness often arise in graphical neural networks used for misinformation detection. However, improving fairness can often come at the cost of reducing accuracy and vice versa. Therefore, we formulate the task of balancing accuracy and fairness as a multi-objective optimization (MOO) problem where we seek to find a set of Pareto optimal solutions. Traditional first-order approaches to solving MOO problems such as multigradient descent can be costly, especially with large neural networks. Instead, we describe a more efficient approach using the predictor-corrector method. Given an initial Pareto optimal point, this approach predicts the direction of a neighboring solution and refines this prediction using a few steps of multigradient descent. We show experimentally that this approach allows for the generation of high-quality Pareto fronts faster than baseline optimization methods.more » « less
-
We present ResilienC, a framework for resilient control of Cyber- Physical Systems subject to STL-based requirements. ResilienC uti- lizes a recently developed formalism for specifying CPS resiliency in terms of sets of (rec,dur) real-valued pairs, where rec repre- sents the system’s capability to rapidly recover from a property violation (recoverability), and dur is reflective of its ability to avoid violations post-recovery (durability). We define the resilient STL control problem as one of multi-objective optimization, where the recoverability and durability of the desired STL specification are maximized. When neither objective is prioritized over the other, the solution to the problem is a set of Pareto-optimal system trajectories. We present a precise solution method to the resilient STL control problem using a mixed-integer linear programming encoding and an a posteriori n-constraint approach for efficiently retrieving the complete set of optimally resilient solutions. In ResilienC, at each time-step, the optimal control action selected from the set of Pareto- optimal solutions by a Decision Maker strategy realizes a form of Model Predictive Control. We demonstrate the practical utility of the ResilienC framework on two significant case studies: autonomous vehicle lane keeping and deadline-driven, multi-region package delivery.more » « less
An official website of the United States government

