skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 1, 2026

Title: Multi‐hazard probabilistic risk assessment and equitable multi‐objective optimization of building retrofit strategies in hurricane‐vulnerable communities
Abstract Coastal communities are increasingly vulnerable to hurricanes, which cause billions of dollars in damage annually through wind, storm surge, and flooding. Mitigation efforts are essential to reduce these impacts but face significant challenges, including uncertainties in hazard prediction, damage estimation, and recovery costs. Resource constraints and the disproportionate burden borne by socioeconomically vulnerable groups further complicate retrofitting strategies. This study presents a probabilistic methodology to assess and mitigate hurricane risks by integrating hazard analysis, building fragility, and economic loss assessment. The methodology prioritizes retrofitting strategies using a risk‐informed, equity‐focused approach. Multi‐objective optimization balances cost‐effectiveness and risk reduction while promoting fair resource allocation among socioeconomic groups. The novelty of this study lies in its direct integration of equity as an objective in resource allocation through multi‐objective optimization, its comprehensive consideration of multi‐hazard risks, its inclusion of both direct and indirect losses in cost assessments, and its use of probabilistic hazard analysis to incorporate varying time horizons. A case study of the Galveston testbed demonstrates the methodology's potential to minimize damage and foster equitable resilience. Analysis of budget scenarios and trade‐offs between cost and equity underscores the importance of comprehensive loss assessments and equity considerations in mitigation and resilience planning. Key findings highlight the varied effectiveness of retrofitting strategies across different budgets and time horizons, the necessity of addressing both direct and indirect losses, and the importance of multi‐hazard considerations for accurate risk assessments. Multi‐objective optimization underscores that equitable solutions are achievable even under constrained budgets. Beyond a certain point, achieving equity does not necessarily increase expected losses, demonstrating that more equitable solutions can be implemented without compromising overall cost‐effectiveness.  more » « less
Award ID(s):
2052930
PAR ID:
10607999
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Computer-Aided Civil and Infrastructure Engineering
Volume:
40
Issue:
15
ISSN:
1093-9687
Page Range / eLocation ID:
2074 to 2097
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Food banks operate with an objective to serve as many of food-insecure people as possible with the limited supply available to them. This paper presents a mixed-integer programming model to identify the efficient assignment of demand zones (counties) to distribution centers (branches) and equitable allocation of donated food from the food bank branches to the demand zones. The model objective function minimizes the total cost of branch operation, the cost of receiving and distributing food, the cost of undistributed food while maintaining the maximum allowed deviation from perfect equity. Data from the Food Bank of Central and Eastern North Carolina (FBCENC) are used to characterize the major attributes controlling the food distribution system of a food bank. Results from the optimization model using FBCENC data show that the optimal allocation under perfect equity follows a particular structure depending on the shipping cost and the cost of undistributed supply. Sensitivity analyses exploring the trade-offs between efficiency and effectiveness as a function of the cost of shipping, truck capacity, and a user-specified maximum inequity cap show that marginal sacrifice in equity can significantly improve effectiveness. The corresponding improvement in effectiveness is greater when comparatively larger trucks are used and the cost of shipping is relatively higher. The analyses also suggest that while efficiency is less sensitive to the allowable limit on the deviation from perfect equity, it is sensitive to truck size. A comparison of direct shipping to branches to operating a local hub suggests the former option to be more cost efficient. 
    more » « less
  2. null (Ed.)
    The changing dynamics of coastal regions and climate pose severe challenges to coastal communities around the world. Effective planning of engineering projects and resilience strategies in coastal regions must not only address current conditions but also take into consideration the expected changes in the exposure and multi-hazard risk in these areas. However, existing performance-based engineering frameworks generally neglect time-varying factors and miss the opportunity to leverage related evidence as it becomes available. This paper proposes a Performance-Based Coastal Engineering (PBCE) framework that is flexible enough to accommodate uncertain time-varying factors, multi-hazard conditions, and cascading-effects. Furthermore, using a dynamic Bayesian network approach, the framework can incorporate observed evidence into the model to update the prior conditional distribution of the analyzed variables. As a proof of concept, two case studies—a typical elevated residential structure and a two-frame system—are presented, considering the effects of cascading failure, the incorporation of time-varying factors, and the influence of emerging evidence. Results show that neglecting cascading effects significantly underestimates the losses and that the incorporation of evidence reduces the uncertainty under the assumed distribution of evidence. The resulting PBCE framework can support data collection efforts, optimization of retrofitting strategies, integration of experts and community interests by facilitating interactions and knowledge sharing, as well as the identification of vulnerable regions and critical components in coastal multi-hazard regions. 
    more » « less
  3. Modern fifth-generation (5G) networks are increasingly moving towards architectures characterized by softwarization and virtualization. This paper addresses the complexities and challenges in deploying applications and services in the emerging multi-tiered 5G network architecture, particularly in the context of microservices-based applications. These applications, characterized by their structure as directed graphs of interdependent functions, are sensitive to the deployment tiers and resource allocation strategies, which can result in performance degradation and susceptibility to failures. Additionally, the threat of deploying potentially malicious applications exacerbates resource allocation inefficiencies. To address these issues, we propose a novel optimization framework that incorporates a probabilistic approach for assessing the risk of malicious applications, leading to a more resilient resource allocation strategy. Our framework dynamically optimizes both computational and networking resources across various tiers, aiming to enhance key performance metrics such as latency, accuracy, and resource utilization. Through detailed simulations, we demonstrate that our framework not only satisfies strict performance requirements but also surpasses existing methods in efficiency and security. 
    more » « less
  4. Abstract Urban water management is increasingly challenged by the need to balance cost-effectiveness with equity considerations. This study presents a multi-objective approach to water conservation within the Las Vegas valley water district, analyzing a comprehensive dataset of water consumption and socioeconomic indicators across all single-family residences. We assess policy scenarios under two primary objectives: maximizing water savings to enhance economic efficiency and improving water affordability to promote equity. Our analysis reveals that while strategies focused on water savings reduce water use more efficiently, they tend to favor higher-income, predominantly white neighborhoods whereas prioritizing water affordability shifts resources towards lower-income, communities of color. The analysis of intermediate policy scenarios reveals the trade-offs and potential synergies between water savings and affordability. Our findings suggest that local water sustainability can be achieved by allocating resources to both high-demand and socioeconomically disadvantaged households. Highlighting the importance of integrating equity considerations into water management policies, this study provides insights for policymakers in crafting more inclusive and sustainable urban water management practices. 
    more » « less
  5. Abstract Reducing wasted food has been identified as a key strategy to meet food security goals and attain human nutritional needs and food preferences in an equitable, sustainable, and resilient manner. Yet, mathematically modeling how reducing wasted food contributes to sustainability, equity, and resilience objectives, and the possible interactions and tradeoffs among these metrics, is limited by challenges to quantifying these characteristics. Using the process of convergent science, we develop a prototype wasted food model to evaluate how a set of common equity, sustainability, and resilience measures interact. We consider prevention (consumer education) and treatment (anaerobic digestion and composting) options for wasted food diversion from landfills. The model applies a convex nonlinear optimization to determine the allocation of wasted food to different management alternatives, optimizing for economic (net cost), sustainability (emissions reductions or energy savings), or equity (distribution of per-capita cost or emissions reduction impacts). The model developed in this research is available online as open-source code for others to replicate and build upon for future studies and analysis. Our findings illustrate that optimal wasted food management alternatives may vary when targeting different metrics and that strategies promoting cost-effectiveness may be in tension with sustainability or equity goals and vice versa. The implications of this study could be used by policy makers to evaluate how wasted food reduction measures will impact sustainability, equity, and resilience goals. 
    more » « less