skip to main content


Title: 60 Candidate High-velocity Stars Originating from the Sagittarius Dwarf Spheroidal Galaxy in Gaia EDR3
Abstract Using proper motions from Gaia Early Data Release 3 (Gaia EDR3) and radial velocities from several surveys, we identify 60 candidate high-velocity stars with a total velocity greater than 75% of the escape velocity that probably originated from the Sagittarius dwarf spheroidal galaxy (Sgr) by orbital analysis. Sgr’s gravity has little effect on the results and the Large Magellanic Cloud’s gravity has a nonnegligible effect on only a few stars. The closest approach of these stars to the Sgr occurred when the Sgr passed its pericenter (∼38.2 Myr ago), which suggests they were tidally stripped from the Sgr. The positions of these stars in the Hertzsprung–Russell diagram and the chemical properties of 19 of them with available [Fe/H] are similar to the Sgr stream member stars. This is consistent with the assumption of their accretion origin. Two of the 60 are hypervelocity stars, which may also be produced by the Hills mechanism.  more » « less
Award ID(s):
1908653
NSF-PAR ID:
10373957
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
The Astrophysical Journal Letters
Volume:
933
Issue:
1
ISSN:
2041-8205
Page Range / eLocation ID:
L13
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    The gravitational redshift induced by stellar surface gravity is notoriously difficult to measure for non-degenerate stars, since its amplitude is small in comparison with the typical Doppler shift induced by stellar radial velocity. In this study, we make use of the large observational data set of the Gaia mission to achieve a significant reduction of noise caused by these random stellar motions. By measuring the differences in velocities between the components of the pairs of comoving stars and wide binaries, we are able to statistically measure the combined effects of gravitational redshift and convective blueshifting of spectral lines, and nullify the effect of the peculiar motions of the stars. For the subset of stars considered in this study, we find a positive correlation between the observed differences in Gaia radial velocities and the differences in surface gravity and convective blueshift inferred from effective temperature and luminosity measurements. The results rule out a null signal at the 5σ level for our full data set. Additionally, we study the subdominant effects of binary motion, and possible systematic errors in radial velocity measurements within Gaia. Results from the technique presented in this study are expected to improve significantly with data from the next Gaia data release. Such improvements could be used to constrain the mass–luminosity relation and stellar models that predict the magnitude of convective blueshift.

     
    more » « less
  2. Abstract

    The Galactic bulge is critical to our understanding of the Milky Way. However, due to the lack of reliable stellar distances, the structure and kinematics of the bulge/bar beyond the Galactic center have remained largely unexplored. Here, we present a method to measure distances of luminous red giants using a period–amplitude–luminosity relation anchored to the Large Magellanic Cloud, with random uncertainties of 10%–15% and systematic errors below 1%–2%. We apply this method to data from the Optical Gravitational Lensing Experiment to measure distances to 190,302 stars in the Galactic bulge and beyond out to 20 kpc. Using this sample, we measure a distance to the Galactic center ofR0= 8108 ± 106stat± 93syspc, consistent with direct measurements of stars orbiting Sgr A*. We cross-match our distance catalog with Gaia DR3 and use the subset of 39,566 overlapping stars to provide the first constraints on the Milky Way’s velocity field (VR,Vϕ,Vz) beyond the Galactic center. We show that theVRquadrupole from the bar’s near side is reflected with respect to the Galactic center, indicating that the bar is bisymmetric and aligned with the inner disk. We also find that the vertical heightVZmap has no major structure in the region of the Galactic bulge, which is inconsistent with a current episode of bar buckling. Finally, we demonstrate withN-body simulations that distance uncertainty plays a factor in the alignment of the major and kinematic axes of the bar, necessitating caution when interpreting results for distant stars.

     
    more » « less
  3. ABSTRACT We study the flow structure in 3D magnetohydrodynamic (MHD) simulations of accretion on to Sagittarius A* via the magnetized winds of the orbiting Wolf–Rayet stars. These simulations cover over 3 orders of magnitude in radius to reach ≈300 gravitational radii, with only one poorly constrained parameter (the magnetic field in the stellar winds). Even for winds with relatively weak magnetic fields (e.g. plasma β ∼ 106), flux freezing/compression in the inflowing gas amplifies the field to β ∼ few well before it reaches the event horizon. Overall, the dynamics, accretion rate, and spherically averaged flow profiles (e.g. density, velocity) in our MHD simulations are remarkably similar to analogous hydrodynamic simulations. We attribute this to the broad distribution of angular momentum provided by the stellar winds, which sources accretion even absent much angular momentum transport. We find that the magneto-rotational instability is not important because of (i) strong magnetic fields that are amplified by flux freezing/compression, and (ii) the rapid inflow/outflow times of the gas and inefficient radiative cooling preclude circularization. The primary effect of magnetic fields is that they drive a polar outflow that is absent in hydrodynamics. The dynamical state of the accretion flow found in our simulations is unlike the rotationally supported tori used as initial conditions in horizon scale simulations, which could have implications for models being used to interpret Event Horizon Telescope and GRAVITY observations of Sgr A*. 
    more » « less
  4. Abstract

    We present new absolute proper-motion measurements for the Arches and Quintuplet clusters, two young massive star clusters near the Galactic center. Using multiepoch HST observations, we construct proper-motion catalogs for the Arches (∼35,000 stars) and Quintuplet (∼40,000 stars) fields in ICRF coordinates established using stars in common with the Gaia EDR3 catalog. The bulk proper motions of the clusters are measured to be (μα*,μδ) = (−0.80 ± 0.032, −1.89 ± 0.021) mas yr−1for the Arches and (μα*,μδ) = (−0.96 ± 0.032, −2.29 ± 0.023) mas yr−1for the Quintuplet, achieving ≳5× higher precision than past measurements. We place the first constraints on the properties of the cluster orbits that incorporate the uncertainty in their current line-of-sight distances. The clusters will not approach closer than ∼25 pc to Sgr A*, making it unlikely that they will inspiral into the nuclear star cluster within their lifetime. Further, the cluster orbits are not consistent with being circular; the average value ofrapo/rperiis ∼1.9 (equivalent to an eccentricity of ∼0.31) for both clusters. Lastly, we find that the clusters do not share a common orbit, challenging one proposed formation scenario in which the clusters formed from molecular clouds on the open stream orbit derived by Kruijssen et al. Meanwhile, our constraints on the birth location and velocity of the clusters offer mild support for a scenario in which the clusters formed via collisions between gas clouds on thex1andx2bar orbit families.

     
    more » « less
  5. Abstract

    We develop a linear perturbative formalism to compute the response of an inhomogeneous stellar disk embedded in a nonresponsive dark matter (DM) halo to various perturbations like bars, spiral arms, and encounters with satellite galaxies. Without self-gravity to reinforce it, the response of a Fourier mode phase mixes away due to an intrinsic spread in the vertical (Ωz), radial (Ωr), and azimuthal (Ωϕ) frequencies, triggering local phase-space spirals. The detailed galactic potential dictates the shape of phase spirals: phase mixing occurs more slowly and thus phase spirals are more loosely wound in the outer disk and in the presence of an ambient DM halo. Collisional diffusion due to scattering of stars by structures like giant molecular clouds causes superexponential damping of the phase spiral amplitude. Thezvzphase spiral is one-armed (two-armed) for vertically antisymmetric (symmetric) bending (breathing) modes. Only transient perturbations with timescales (τP) comparable to the vertical oscillation period (τz∼ 1/Ωz) can trigger vertical phase spirals. Each (n,l,m) mode of the response to impulsive (τP<τ= 1/(nΩz+lΩr+mΩϕ)) perturbations is power-law (∼τP/τ) suppressed, but that to adiabatic (τP>τ) perturbations is exponentially weak (expτP/τα) except for resonant (τ→ ∞ ) modes. Slower (τP>τz) perturbations, e.g., distant encounters with satellite galaxies, induce stronger bending modes. Sagittarius (Sgr) dominates the solar neighborhood response of the Milky Way (MW) disk to satellite encounters. Thus, if the Gaia phase spiral was triggered by a MW satellite, Sgr is the leading contender. However, the survival of the phase spiral against collisional damping necessitates an impact ∼0.6–0.7 Gyr ago.

     
    more » « less