skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: 60 Candidate High-velocity Stars Originating from the Sagittarius Dwarf Spheroidal Galaxy in Gaia EDR3
Abstract Using proper motions from Gaia Early Data Release 3 (Gaia EDR3) and radial velocities from several surveys, we identify 60 candidate high-velocity stars with a total velocity greater than 75% of the escape velocity that probably originated from the Sagittarius dwarf spheroidal galaxy (Sgr) by orbital analysis. Sgr’s gravity has little effect on the results and the Large Magellanic Cloud’s gravity has a nonnegligible effect on only a few stars. The closest approach of these stars to the Sgr occurred when the Sgr passed its pericenter (∼38.2 Myr ago), which suggests they were tidally stripped from the Sgr. The positions of these stars in the Hertzsprung–Russell diagram and the chemical properties of 19 of them with available [Fe/H] are similar to the Sgr stream member stars. This is consistent with the assumption of their accretion origin. Two of the 60 are hypervelocity stars, which may also be produced by the Hills mechanism.  more » « less
Award ID(s):
1908653
PAR ID:
10373957
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
The Astrophysical Journal Letters
Volume:
933
Issue:
1
ISSN:
2041-8205
Page Range / eLocation ID:
L13
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Dwarf galaxies like Sagittarius (Sgr) provide a unique window into the early stages of galactic chemical evolution, particularly through their metal-poor stars. By studying the chemical abundances of stars in the Sgr core and tidal streams, we can gain insights into the assembly history of this galaxy and its early heavy element nucleosynthesis processes. We efficiently selected extremely metal-poor candidates in the core and streams for high-resolution spectroscopic analysis using metallicity-sensitive photometry from SkyMapper DR2 and Gaia DR3 XP spectra, and proper motions. We present a sample of 37 Sgr stars with detailed chemical abundances, of which we identify 10 extremely metal-poor ([Fe/H] ≤ −3.0) stars, 25 very metal-poor ([Fe/H] ≤ −2.0) stars, and two metal-poor ([Fe/H] ≤ −1.0) stars. This sample increases the number of extremely metal-poor Sgr stars analyzed with high-resolution spectroscopy by a factor of 5. Of these stars, 15 are identified as members of the Sgr tidal stream, while the remaining 22 are associated with the core. We derive abundances for up to 20 elements and identify no statistically significant differences between the element abundance patterns across the core and stream samples. Intriguingly, we identify stars that may have formed in ultrafaint dwarf galaxies that accreted onto Sgr, in addition to patterns of C andr-process elements distinct from the Milky Way halo. Over half of the sample shows a neutron-capture element abundance pattern consistent with the scaled solar purer-process pattern, indicating earlyr-process enrichment in the Sgr progenitor. 
    more » « less
  2. ABSTRACT We present results from simultaneous modelling of 2D (projected along the line of sight) position, proper motion, and line-of-sight velocity for Gaia- and Apache Point Observatory Galactic Evolution Experiment (APOGEE)-observed stars near the centre of the Sagittarius (Sgr) dwarf spheroidal galaxy. We use a mixture model that allows for independent sub-populations contributed by the Sgr galaxy, its nuclear star cluster Messier 54 (M54), and the Milky Way foreground. We find an offset of $$0.295\pm 0.029$$ deg between the inferred centroids of Sgr and M54, corresponding to a (projected) physical separation of $$0.135\pm 0.013$$ kpc. The detected offset might plausibly be driven by unmodelled asymmetry in Sgr’s stellar configuration; however, standard criteria for model selection favour our symmetric model over an alternative that allows for bilateral asymmetry. We infer an offset between the proper motion centres of Sgr and M54 of $$[\Delta \mu _{\alpha }\cos \delta ,\Delta \mu _{\delta }]=[4.9, -19.7] \pm [6.8, 6.2] \ \mu \mathrm{ as}\,\mathrm{ yr}^{-1}$$ ($$[0.61, -2.46] \pm [0.85, 0.77] \ \mathrm{ km}\,\mathrm{ s}^{-1}$$), with magnitude similar to the covariance expected due to spatially correlated systematic error. We infer an offset of $$4.1\pm 1.2 \ \mathrm{ km}\,\mathrm{ s}^{-1}$$ in line-of-sight velocity. Using inferred values for the systemic positions and motions of Sgr and M54 as initial conditions, we calculate the recent orbital history of a simplified Sgr/M54 system, which we demonstrate to be sensitive to any line-of-sight distance offset between M54 and Sgr, and to the distribution of dark matter within Sgr. 
    more » « less
  3. Abstract In this work, we study the phase-space and chemical properties of the Sagittarius (Sgr) stream, the tidal tails produced by the ongoing destruction of the Sgr dwarf spheroidal (dSph) galaxy, focusing on its very metal-poor (VMP; [Fe/H] < −2) content. We combine spectroscopic and astrometric information from SEGUE and Gaia EDR3, respectively, with data products from a new large-scale run of theStarHorsespectrophotometric code. Our selection criteria yield ∼1600 stream members, including >200 VMP stars. We find the leading arm (b> 0°) of the Sgr stream to be more metal-poor, by ∼0.2 dex, than the trailing one (b< 0°). With a subsample of turnoff and subgiant stars, we estimate this substructure’s stellar population to be ∼1 Gyr older than the thick disk’s. With the aid of anN-body model of the Sgr system, we verify that simulated particles stripped earlier (>2 Gyr ago) have present-day phase-space properties similar to lower metallicity stream stars. Conversely, those stripped more recently (<2 Gyr) are preferentially akin to metal-rich ([Fe/H] > −1) members of the stream. Such correlation between kinematics and chemistry can be explained by the existence of a dynamically hotter, less centrally concentrated, and more metal-poor population in Sgr dSph prior to its disruption, implying that this galaxy was able to develop a metallicity gradient before its accretion. Finally, we identified several carbon-enhanced metal-poor ([C/Fe] > +0.7 and [Fe/H] ≤ −1.5) stars in the Sgr stream, which might be in tension with current observations of its remaining core where such objects are not found. 
    more » « less
  4. Abstract The third data release (DR3) of Gaia has provided a fivefold increase in the number of radial velocity measurements of stars, as well as a stark improvement in parallax and proper motion measurements. To help with studies that seek to test models and interpret Gaia DR3, we present nine Gaia synthetic surveys, based on three solar positions in three Milky Way-mass galaxies of theLattesuite of theFire-2 cosmological simulations. These synthetic surveys match the selection function, radial velocity measurements, and photometry of Gaia DR3, adapting the code baseAnanke, previously used to match the Gaia DR2 release by Sanderson et al. The synthetic surveys are publicly available and can be found athttp://ananke.hub.yt/. Similarly to the previous release ofAnanke, these surveys are based on cosmological simulations and thus are able to model nonequilibrium dynamical effects, making them a useful tool in testing and interpreting Gaia DR3. 
    more » « less
  5. Abstract The dynamics of star-forming gas can be affected by many physical processes, such as turbulence, gravity, supernova explosions, and magnetic fields. In this paper, we investigate several nearby star-forming regions (Orion, Upper Sco, Taurus, and Perseus) for kinematic imprints of these influences on the newly formed stars. Using Gaia DR3 astrometry and APOGEE DR17 radial velocities, we compute first-order velocity structure functions (VSFs) of young stars in galactic Cartesian coordinates in both 6D (3D positions and 3D velocities) and 4D (3D positions and each 1D velocity) to identify signatures of turbulence and anisotropic motion. We also construct 3D and 1D radial velocity profiles to identify coherent expansion trends, and compare stellar proper motions to plane-of-sky magnetic field orientations in Taurus and Perseus. We find that the VSFs are mildly anisotropic, with slightly different amplitudes, slopes, or features in different directions in several groups, but in general, they are all consistent with Larson’s Relation at intermediate length scales, especially in less compact groups. In several cases, the VSFs exhibit features suggestive of local energy injection from supernovae. Radial velocity profiles reveal clear anisotropic expansion in multiple groups, with the most extreme cases corresponding to those with the most anisotropic VSFs. In Perseus, we find that the motions of young stars are preferentially perpendicular to the local magnetic field. We find multiple, overlapping causes in each group for the observed kinematics. Our findings support that young stars remember more than just the turbulent state of their natal clouds. 
    more » « less