Abstract Dwarf galaxies like Sagittarius (Sgr) provide a unique window into the early stages of galactic chemical evolution, particularly through their metal-poor stars. By studying the chemical abundances of stars in the Sgr core and tidal streams, we can gain insights into the assembly history of this galaxy and its early heavy element nucleosynthesis processes. We efficiently selected extremely metal-poor candidates in the core and streams for high-resolution spectroscopic analysis using metallicity-sensitive photometry from SkyMapper DR2 and Gaia DR3 XP spectra, and proper motions. We present a sample of 37 Sgr stars with detailed chemical abundances, of which we identify 10 extremely metal-poor ([Fe/H] ≤ −3.0) stars, 25 very metal-poor ([Fe/H] ≤ −2.0) stars, and two metal-poor ([Fe/H] ≤ −1.0) stars. This sample increases the number of extremely metal-poor Sgr stars analyzed with high-resolution spectroscopy by a factor of 5. Of these stars, 15 are identified as members of the Sgr tidal stream, while the remaining 22 are associated with the core. We derive abundances for up to 20 elements and identify no statistically significant differences between the element abundance patterns across the core and stream samples. Intriguingly, we identify stars that may have formed in ultrafaint dwarf galaxies that accreted onto Sgr, in addition to patterns of C andr-process elements distinct from the Milky Way halo. Over half of the sample shows a neutron-capture element abundance pattern consistent with the scaled solar purer-process pattern, indicating earlyr-process enrichment in the Sgr progenitor.
more »
« less
Phase-space Properties and Chemistry of the Sagittarius Stellar Stream Down to the Extremely Metal-poor ([Fe/H] ≲ −3) Regime
Abstract In this work, we study the phase-space and chemical properties of the Sagittarius (Sgr) stream, the tidal tails produced by the ongoing destruction of the Sgr dwarf spheroidal (dSph) galaxy, focusing on its very metal-poor (VMP; [Fe/H] < −2) content. We combine spectroscopic and astrometric information from SEGUE and Gaia EDR3, respectively, with data products from a new large-scale run of theStarHorsespectrophotometric code. Our selection criteria yield ∼1600 stream members, including >200 VMP stars. We find the leading arm (b> 0°) of the Sgr stream to be more metal-poor, by ∼0.2 dex, than the trailing one (b< 0°). With a subsample of turnoff and subgiant stars, we estimate this substructure’s stellar population to be ∼1 Gyr older than the thick disk’s. With the aid of anN-body model of the Sgr system, we verify that simulated particles stripped earlier (>2 Gyr ago) have present-day phase-space properties similar to lower metallicity stream stars. Conversely, those stripped more recently (<2 Gyr) are preferentially akin to metal-rich ([Fe/H] > −1) members of the stream. Such correlation between kinematics and chemistry can be explained by the existence of a dynamically hotter, less centrally concentrated, and more metal-poor population in Sgr dSph prior to its disruption, implying that this galaxy was able to develop a metallicity gradient before its accretion. Finally, we identified several carbon-enhanced metal-poor ([C/Fe] > +0.7 and [Fe/H] ≤ −1.5) stars in the Sgr stream, which might be in tension with current observations of its remaining core where such objects are not found.
more »
« less
- Award ID(s):
- 1927130
- PAR ID:
- 10404122
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 946
- Issue:
- 2
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 66
- Size(s):
- Article No. 66
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The metallicity distribution function (MDF) and internal chemical variations of a galaxy are fundamental to understand its formation and assembly history. In this work, we analyze photometric metallicities for 3883 stars over 7 half-light radii (rh) in the Sculptor (Scl) dwarf spheroidal (dSph) galaxy, using new narrowband imaging data from the Mapping the Ancient Galaxy in CaHK (MAGIC) survey conducted with the Dark Energy Camera (DECam) at the 4 m Blanco Telescope. This work demonstrates the scientific potential of MAGIC using the Scl dSph galaxy, one of the most well-studied satellites of the Milky Way. Our sample ranges from [Fe/H] ≈ –4.0 to [Fe/H] ≈ –0.6, includes six new extremely metal-poor candidates ([Fe/H] ≤ –3.0), and is almost 3 times larger than the largest spectroscopic metallicity data set in the Scl dSph. Our spatially unbiased sample of metallicities provides a more accurate representation of the MDF, revealing a more metal-rich peak than observed in the most recent spectroscopic sample. It also reveals a break in the metallicity gradient, with a strong change in the slope: from −3.26 ± 0.18 dex deg−1for stars inside ∼1rhto −0.55 ± 0.26 dex deg−1for the outer part of the Scl dSph. Our study demonstrates that combining photometric metallicity analysis with the wide field of view of DECam offers an efficient and unbiased approach for studying the stellar populations of dwarf galaxies in the Local Group.more » « less
-
Abstract Photometric stellar surveys now cover a large fraction of the sky, probe to fainter magnitudes than large-scale spectroscopic surveys, and are relatively free from the target selection biases often associated with such studies. Photometric-metallicity estimates that include narrow/medium-band filters can achieve comparable accuracy and precision to existing low-resolution spectroscopic surveys such as Sloan Digital Sky Survey/SEGUE and LAMOST. Here we report on an effort to identify likely members of the Galactic disk system among the very metal-poor (VMP; [Fe/H] ≤ −2) and extremely metal-poor (EMP; [Fe/H] ≤ −3) stars. Our analysis is based on an initial sample of ∼11.5 million stars with full space motions selected from the SkyMapper Southern Survey (SMSS) and Stellar Abundance and Galactic Evolution Survey (SAGES). After applying a number of quality cuts to obtain the best available metallicity and dynamical estimates, we analyze a total of ∼5.86 million stars in the combined SMSS/SAGES sample. We employ two techniques that, depending on the method, identify between 876 and 1476 VMP stars (6.9%−11.7% of all VMP stars) and between 40 and 59 EMP stars (12.4%−18.3% of all EMP stars) that appear to be members of the Galactic disk system on highly prograde orbits (vϕ> 150 km s−1). The total number of candidate VMP/EMP disklike stars is 1496, the majority of which have low orbital eccentricities, ecc ≤ 0.4; many have ecc ≤ 0.2. The large fractions of VMP/EMP stars associated with the Milky Way disk system strongly suggest the presence of an early-forming “primordial” disk.more » « less
-
Context.The C-19 stellar stream is the most metal-poor stream known to date. While its wth and velocity dispersion indicate a dwarf galaxy origin, its metallicity spread and abundance patterns are more similar to those of globular clusters (GCs). If it is indeed of GC origin, its extremely low metallicity ([Fe/H]=−3.4, estimated from giant stars) implies that these stellar systems can form out of gas that is as extremely poor in metals as this. Previously, only giant stream stars were observed spectroscopically, although the majority of stream stars are unevolved stars. Aims.We pushed the spectroscopic observations to the subgiant branch stars (G≈ 20) in order to consolate the chemical and dynamical properties of C-19. Methods.We used the high-efficiency spectrograph X-shooter fed by the ESO 8.2m VLT telescope to observe 15 candate subgiant C-19 members. The spectra were used to measure radial velocities and to determine chemical abundances using the MyGIsFOS code. Results.We developed a likelihood model that takes metallicity and radial velocities into account. We conclude that 12 stars are likely members of C-19, while 3 stars (S05, S12, and S13) are likely contaminants. When these 3 stars are excluded, our model implies a mean metallicity 〈[Fe/H]〉 = −3.1 ± 0.1, the mean radial velocity is 〈vr〉 = −192 ± 3km s−1, and the velocity dispersion is σvr= 5.9−5.9+3.6km s−1. This all agrees within errors with previous studies. The A(Mg) of a sample of 15 C-19 members, including 6 giant stars, shows a standard deviation of 0.44 dex, and the mean uncertainty on Mg is 0.25 dex. Conclusions.Our preferred interpretation of the current data is that C-19 is a disrupted GC. We cannot completely rule out the possibility that the GC could have belonged to a dwarf galaxy that contained more metal-rich stars, however. This scenario would explain the radial velocity members at higher metallicity, as well as the wth and velocity dispersion of the stream. In either case, a GC formed out of gas as poor in metals as these stars seems necessary to explain the existence of C-19. The possibility that no GC was associated with C-19 cannot be ruled out either.more » « less
-
Abstract We design an uncertainty-aware cost-sensitive neural network (UA-CSNet) to estimate metallicities from dereddened and corrected Gaia BP/RP (XP) spectra for giant stars. This method accounts for both stochastic errors in the input spectra and the imbalanced density distribution in [Fe/H] values. With a specialized architecture and training strategy, the UA-CSNet improves the precision of the predicted metallicities, especially for very metal-poor (VMP; [Fe/H] ≤ −2.0) stars. With the PASTEL catalog as the training sample, our model can estimate metallicities down to [Fe/H] ∼ −4. We compare our estimates with a number of external catalogs and conduct tests using star clusters, finding overall good agreement. We also confirm that our estimates for VMP stars are unaffected by carbon enhancement. Applying the UA-CSNet, we obtain reliable and precise metallicity estimates for approximately 20 million giant stars, including 360,000 VMP stars and 50,000 extremely metal-poor ([Fe/H] ≤ −3.0) stars. The resulting catalog is publicly available via the Chinese Virtual Observatory at doi: 10.12149/101604. This work highlights the potential of low-resolution spectra for metallicity estimation and provides a valuable data set for studying the formation and chemodynamical evolution of our Galaxy.more » « less
An official website of the United States government
