skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.

Title: Data report: marine tephra compositions in the deep drilling cores of the South China Sea, IODP Expeditions 349 and 367/368
We present geochemical major and trace element glass data for tephra samples from International Ocean Discovery Program (IODP) Expeditions 349 and 367/368 from four drilling sites in the South China Sea. Overall, we obtained data for 55 samples and identified 46 as tephra layers, with dominant volcanic glass shards in the component inventory (in the 63–125 µ fraction). In total, we performed 720 single glass shard analyses using an electron microprobe for major element compositions, as well as 130 single glass shard analyses using laser ablation–inductively coupled plasma–mass spectrometry (LA-ICP-MS) for trace element compositions. The compositions of the samples range from basaltic, (trachy-) andesitic to trachytic, and rhyolitic and fall mainly into the calc-alkaline and K-rich calc-alkaline magmatic series. One sample falls into the shoshonitic series. Tephras from Expedition 349 Site U1431 span the whole compositional range, whereas tephras from the other sites are limited to rhyolitic composition. Tephra ages, calculated applying sedimentation rates, range to ~2 Ma at Site U1431, ~0.8 Ma at Expedition 367 Site U1499, ~0.6 Ma at Expedition 368 Site U1501, and ~0.9 Ma at Expedition 368 Site U1505.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the International Ocean Discovery Program
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We report on a total of 1005 samples analyzed for major and trace element compositions from marine sediments drilled along the Hikurangi subduction zone and within the incoming Pacific plate. The samples are from International Ocean Discovery Program Expeditions 375 and 372; Integrated Ocean Drilling Program Expedition 329; Ocean Drilling Program Leg 181; and Deep Sea Drilling Project Leg 90. All 1005 samples, resulting in a total number of ~20,200 individual measurements, were analyzed for major element compositions with the electron microprobe. A subset of 419 samples, resulting in a total number of ~1820 individual glass shard analyses, were analyzed for trace element compositions using the laser ablation-inductively coupled plasma-mass spectrometer. In total, ~640 samples were identified as primary ash layers based on their homogeneous geochemistry, visual appearance in the core pictures, and high amount of volcanic glass. Based on the biostratigraphy presented in the cruise reports and subsequent work, we can distinguish between Quaternary- and Neogene-derived tephras. The tephra layers of Quaternary age are mostly of rhyolitic composition with occasional andesitic, dacitic, and trachytic glass shards. The Neogene tephras are mostly of basaltic andesite, andesitic, and rhyolitic composition, with a few basaltic and trachytic tephras. Tephras of both age groups follow the calc-alkaline series trend with a tendency to shift into the high-K calc-alkaline series for tephras with >70 wt% SiO2. 
    more » « less
  2. We report on a total of 310 samples from marine sediments drilled in the Indian Ocean that were analyzed for glass shard compositions. Samples are mainly from International Ocean Discovery Program Expeditions 353 and 362 but are complemented by samples from Expedition 354; Ocean Drilling Program Legs 183, 121, 120, 119, 116, and 115; and Deep Sea Drilling Project Leg 22. We performed 4327 successful single glass shard analyses with the electron microprobe for major element compositions and conducted 937 successful single analyses with laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) for trace element compositions on individual glass shards previously measured with the electron microprobe. In total, we were able to measure glass compositions for 254 samples. Of all the samples, 235 can be classified as tephra layers containing pyroclasts as the predominant component in their clast inventory between the 63 and 125 µm grain size fraction, often exceeding 90 vol%. The compositions of the Indian Ocean marine tephras range from basalt to rhyolite and from basaltic trachyandesite to trachyte and fall into the calc-alkaline, K-rich calc-alkaline, and shoshonitic magmatic series. 
    more » « less
  3. IODP Expedition 379 deep-sea drilling in 2019 (Gohl et al. 2021, doi:10.14379/iodp.proc.379.2021), offered an opportunity to obtain chronostratigraphic control for seismic reflection data for Amundsen Sea shelf and slope deposits that record Miocene to Present fluctuations in volume of the West Antarctic ice sheet. Here we report the age and interpret the provenance of a volcanic ash bed recovered at/near the Plio-Pleistocene boundary at 31.51 meters below sea level in Hole U1533B and 33.94 mbsf in Hole U1533D. With distinctive geochemistry and inferred wide regional distribution, the bed may serve as a reliable age marker. In Hole 1533B, the fresh tephra forms a discrete layer interstratified within uniform brown marine mud. The layer has a sharp base and upper boundary that is gradational over 5 cm into overlying mud. Color reflectance and density data aided identification of the tephra horizon (diffuse) in Hole 1533D, ~1000m away. A possible on-land source for ash is the Miocene to Pleistocene Marie Byrd Land volcanic province, comprising 18 large alkaline volcanoes dominated by effusive lavas. Products of pyroclastic eruptions are uncommon, mainly occurring as distal englacial, and probably marine, tephra. We undertook an offshore-onshore comparison by first characterizing samples of Site U1533 tephra from a petrographic and geochemical standpoint, using thin section observations, EMPA-WDS glass compositions, and 40Ar/39Ar dating. We then identified onshore exposures with similar characteristics. The offshore tephra are composed of coarse (50-300µm) cuspate glass shards with elongated vesicles. The glass composition is rhyolite, with 75-79wt.% SiO2, ~4wt.% FeO and 0.0wt.% MgO. Single-crystal feldspar 40Ar/39Ar dates are 2.55±0.12 and 2.92±0.02 Ma for U1533B and 2.87 ±0.45 Ma for U1533D. The geochemistry, shard morphology, discrete bed expression, and lateral continuity between Holes U1533B-U1533D indicate that the rhyolite tephra formed as airfall settled to the deep seabed. The ca. 2.55 Ma age based on youngest feldspar grains differs slightly from the 2.1 to 2.2 Ma result obtained from in-progress core bio-magnetostratigraphy. Rare exposures of rhyolite are found in the Chang Peak/Mt. Waesche centers, 1080 km from Site U1533. We obtained pumice sample MB.7.3 (prior-published age of 1.6±0.2 Ma), which displays elevated FeO and F content, and MB.8.1, a specimen of porphyritic cryptocrystalline lava. Single-crystal sanidine 40Ar/39Ar dates are 1.315±0.007 Ma (MB.7.3) and 1.385±0.003 Ma (MB.8.1). Site U1533 samples share a geochemical affinity with these on-land rhyolites, expressed as similar SiO2, CaO, TiO2, MgO and FeO content, suggesting an origin for Site U1533 tephra in the Chang-Waesche volcanoes. A possible explanation for the distinctly greater age, and observed contrasts in Al2O3, Na2O and F percentages, is that Site U1533 tephra are older and erupted from a source entirely concealed beneath subsequent eruptions and the ice sheet. Our results suggest that rhyolite volcanism initiated earlier, was of longer duration than previously known (2.92 to 1.315 Ma), and dispersed tephra far offshore. The finding is significant because ash and aerosols produced by large eruptions may influence regional climate. Antarctica cooled significantly and ice sheets expanded in latest Pliocene time (McKay et al. 2012, doi:10.1073/pnas.1112248109). 
    more » « less
  4. Abstract

    We present a full characterization of a 20 cm‐thick tephra layer found intercalated in the marine sediments recovered at Site U1524 during International Ocean Discovery Program (IODP) Expedition 374, in the Ross Sea, Antarctica. Tephra bedforms, mineral paragenesis, and major‐ and trace‐element composition on individual glass shards were investigated and the tephra age was constrained by40Ar‐39Ar on sanidine crystals. The40Ar‐39Ar data indicate that sanidine grains are variably contaminated by excess Ar, with the best age estimate of 1.282 ± 0.012 Ma, based on both single‐grain total fusion analyses and step‐heating experiments on multi‐grain aliquots. The tephra is characterized by a very homogeneous rhyolitic composition and a peculiar mineral assemblage, dominated by sanidine, quartz, and minor aenigmatite and arfvedsonite‐riebeckite amphiboles. The tephra from Site U1524 compositionally matches with a ca. 1.3 Ma, rhyolitic pumice fall deposit on the rim of the Chang Peak volcano summit caldera, in the Marie Byrd Land, located ca. 1,300 km from Site U1524. This contribution offers important volcanological data on the eruptive history of Chang Peak volcano and adds a new tephrochronologic marker for the dating, correlation, and synchronization of marine and continental early Pleistocene records of West Antarctica.

    more » « less
  5. During International Ocean Discovery Program (IODP) Expedition 367/368/368X, Holes U1504A and U1504B were cored on the continental shelf (2817–2843 meters below sea level) in the northern South China Sea (SCS). A total of 106 m of metamorphic basement was penetrated that consists of greenish gray, deformed mylonitic, epidote-chlorite to calc-silicate schists containing granofels clasts ("greenschist"). Here we report bulk-rock major and trace element data from 17 greenschist samples, from which a subset of 9 samples was additionally analyzed for Pb-Nd-Hf isotope ratios. Fluid-mobile elements (U, Li, Rb, K, and Cs) behave somewhat erratically, yet tectonic discrimination and primitive mantle–normalized multielement diagrams reveal signatures that are typical for enriched intraplate basalts. These include a negative Pb anomaly (Ce/Pb = 34 ± 10), relative enrichments of Nb and Ta (Nb/La = 1.5 ± 0.3; Th/Nb = 0.07 ± 0.01), and a steep rare earth element pattern (La/Sm = 3.7 ± 0.7; Ho/Lu = 2.9 ± 0.2). The high values of the uranogenic 206Pb/204Pb (21.2–25.9) and 207Pb/204Pb (15.7–16.0) and their strong correlation point to a postformation "U addition event" that took place at 329 Ma ± 2 My (late Carboniferous). 143Nd/144Nd and 176Hf/177Hf data are consistent with the origin from an enriched Paleozoic age mantle source. In summary, our data suggest that the protolith of the Site U1504 metamorphic basement was an ocean-island basalt–type igneous rock that deformed during the late Paleozoic and was part of the prerift crustal basement of the SCS Basin. 
    more » « less