We report on a total of 1005 samples analyzed for major and trace element compositions from marine sediments drilled along the Hikurangi subduction zone and within the incoming Pacific plate. The samples are from International Ocean Discovery Program Expeditions 375 and 372; Integrated Ocean Drilling Program Expedition 329; Ocean Drilling Program Leg 181; and Deep Sea Drilling Project Leg 90. All 1005 samples, resulting in a total number of ~20,200 individual measurements, were analyzed for major element compositions with the electron microprobe. A subset of 419 samples, resulting in a total number of ~1820 individual glass shard analyses, were analyzed for trace element compositions using the laser ablation-inductively coupled plasma-mass spectrometer. In total, ~640 samples were identified as primary ash layers based on their homogeneous geochemistry, visual appearance in the core pictures, and high amount of volcanic glass. Based on the biostratigraphy presented in the cruise reports and subsequent work, we can distinguish between Quaternary- and Neogene-derived tephras. The tephra layers of Quaternary age are mostly of rhyolitic composition with occasional andesitic, dacitic, and trachytic glass shards. The Neogene tephras are mostly of basaltic andesite, andesitic, and rhyolitic composition, with a few basaltic and trachytic tephras. Tephras of both age groups follow the calc-alkaline series trend with a tendency to shift into the high-K calc-alkaline series for tephras with >70 wt% SiO2.
more »
« less
Data report: chemical compositions of marine tephra layers in the Indian Ocean, IODP Expeditions 353 and 362
We report on a total of 310 samples from marine sediments drilled in the Indian Ocean that were analyzed for glass shard compositions. Samples are mainly from International Ocean Discovery Program Expeditions 353 and 362 but are complemented by samples from Expedition 354; Ocean Drilling Program Legs 183, 121, 120, 119, 116, and 115; and Deep Sea Drilling Project Leg 22. We performed 4327 successful single glass shard analyses with the electron microprobe for major element compositions and conducted 937 successful single analyses with laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) for trace element compositions on individual glass shards previously measured with the electron microprobe. In total, we were able to measure glass compositions for 254 samples. Of all the samples, 235 can be classified as tephra layers containing pyroclasts as the predominant component in their clast inventory between the 63 and 125 µm grain size fraction, often exceeding 90 vol%. The compositions of the Indian Ocean marine tephras range from basalt to rhyolite and from basaltic trachyandesite to trachyte and fall into the calc-alkaline, K-rich calc-alkaline, and shoshonitic magmatic series.
more »
« less
- Award ID(s):
- 1326927
- PAR ID:
- 10405304
- Publisher / Repository:
- International Ocean Discovery Program
- Date Published:
- Journal Name:
- Proceedings of the International Ocean Discovery Program
- Volume:
- 362
- Issue:
- 207
- ISSN:
- 2377-3189
- ISBN:
- 978-1-954252-55-4
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We present geochemical major and trace element glass data for tephra samples from International Ocean Discovery Program (IODP) Expeditions 349 and 367/368 from four drilling sites in the South China Sea. Overall, we obtained data for 55 samples and identified 46 as tephra layers, with dominant volcanic glass shards in the component inventory (in the 63–125 µ fraction). In total, we performed 720 single glass shard analyses using an electron microprobe for major element compositions, as well as 130 single glass shard analyses using laser ablation–inductively coupled plasma–mass spectrometry (LA-ICP-MS) for trace element compositions. The compositions of the samples range from basaltic, (trachy-) andesitic to trachytic, and rhyolitic and fall mainly into the calc-alkaline and K-rich calc-alkaline magmatic series. One sample falls into the shoshonitic series. Tephras from Expedition 349 Site U1431 span the whole compositional range, whereas tephras from the other sites are limited to rhyolitic composition. Tephra ages, calculated applying sedimentation rates, range to ~2 Ma at Site U1431, ~0.8 Ma at Expedition 367 Site U1499, ~0.6 Ma at Expedition 368 Site U1501, and ~0.9 Ma at Expedition 368 Site U1505.more » « less
-
The Guaymas Basin is a 6 Ma transtensional ocean basin located in the central Gulf of California characterized by active seafloor spreading, off-axis magmatism, and high biogenic and terrigenous sedimentation rates. Sparse volcaniclastic intervals were identified by shipboard scientists in Quaternary sedimentary cores recovered during International Ocean Discovery Program (IODP) Expedition 385. Shipboard visual core descriptions and smear slide analyses were used to identify 57 volcaniclastic intervals, which were then sampled and analyzed macroscopically and microscopically. Petrographic modal analyses were conducted on a subset of 36 thin sections with a total of 300 points counted per thin section. A grain classification scheme was developed from published literature to characterize the compositional and textural variability of volcanic grains in cores from across the basin. Point count percentages reveal that vitric volcanic lithic fragments, particularly brown glass shards, are the dominant clast type observed at all drill sites, whereas crystal-bearing volcanic lithic fragments and mineral grains comprise a minor percentage of the total points counted. The vitric fragments also exhibit a wide range of shard vesicularity and morphologies. This data report presents a petrographic analysis of volcaniclastic deposits recovered during Expedition 385 to elucidate on the modal and spatial distribution of volcanic material in the Guaymas Basin.more » « less
-
IODP Expedition 379 deep-sea drilling in 2019 (Gohl et al. 2021, doi:10.14379/iodp.proc.379.2021), offered an opportunity to obtain chronostratigraphic control for seismic reflection data for Amundsen Sea shelf and slope deposits that record Miocene to Present fluctuations in volume of the West Antarctic ice sheet. Here we report the age and interpret the provenance of a volcanic ash bed recovered at/near the Plio-Pleistocene boundary at 31.51 meters below sea level in Hole U1533B and 33.94 mbsf in Hole U1533D. With distinctive geochemistry and inferred wide regional distribution, the bed may serve as a reliable age marker. In Hole 1533B, the fresh tephra forms a discrete layer interstratified within uniform brown marine mud. The layer has a sharp base and upper boundary that is gradational over 5 cm into overlying mud. Color reflectance and density data aided identification of the tephra horizon (diffuse) in Hole 1533D, ~1000m away. A possible on-land source for ash is the Miocene to Pleistocene Marie Byrd Land volcanic province, comprising 18 large alkaline volcanoes dominated by effusive lavas. Products of pyroclastic eruptions are uncommon, mainly occurring as distal englacial, and probably marine, tephra. We undertook an offshore-onshore comparison by first characterizing samples of Site U1533 tephra from a petrographic and geochemical standpoint, using thin section observations, EMPA-WDS glass compositions, and 40Ar/39Ar dating. We then identified onshore exposures with similar characteristics. The offshore tephra are composed of coarse (50-300µm) cuspate glass shards with elongated vesicles. The glass composition is rhyolite, with 75-79wt.% SiO2, ~4wt.% FeO and 0.0wt.% MgO. Single-crystal feldspar 40Ar/39Ar dates are 2.55±0.12 and 2.92±0.02 Ma for U1533B and 2.87 ±0.45 Ma for U1533D. The geochemistry, shard morphology, discrete bed expression, and lateral continuity between Holes U1533B-U1533D indicate that the rhyolite tephra formed as airfall settled to the deep seabed. The ca. 2.55 Ma age based on youngest feldspar grains differs slightly from the 2.1 to 2.2 Ma result obtained from in-progress core bio-magnetostratigraphy. Rare exposures of rhyolite are found in the Chang Peak/Mt. Waesche centers, 1080 km from Site U1533. We obtained pumice sample MB.7.3 (prior-published age of 1.6±0.2 Ma), which displays elevated FeO and F content, and MB.8.1, a specimen of porphyritic cryptocrystalline lava. Single-crystal sanidine 40Ar/39Ar dates are 1.315±0.007 Ma (MB.7.3) and 1.385±0.003 Ma (MB.8.1). Site U1533 samples share a geochemical affinity with these on-land rhyolites, expressed as similar SiO2, CaO, TiO2, MgO and FeO content, suggesting an origin for Site U1533 tephra in the Chang-Waesche volcanoes. A possible explanation for the distinctly greater age, and observed contrasts in Al2O3, Na2O and F percentages, is that Site U1533 tephra are older and erupted from a source entirely concealed beneath subsequent eruptions and the ice sheet. Our results suggest that rhyolite volcanism initiated earlier, was of longer duration than previously known (2.92 to 1.315 Ma), and dispersed tephra far offshore. The finding is significant because ash and aerosols produced by large eruptions may influence regional climate. Antarctica cooled significantly and ice sheets expanded in latest Pliocene time (McKay et al. 2012, doi:10.1073/pnas.1112248109).more » « less
-
The Tristan-Gough plume system forms age-progressive volcanism on the African plate over ~130 Ma, extending to the active islands of Gough and Tristan-Inaccessible. Walvis Ridge forms massive ridges and plateaus that split into three narrower ridges of the Guyot Province. International Ocean Discovery Program (IODP) Expedition 391 Site U1577 sampled the extreme eastern flank of Valdivia Bank, an oceanic plateau within the Walvis Ridge. Here we report major and trace element data as well as Sr-Nd-Hf-Pb isotopic compositions of IODP 391 Site U1577. Three massive basalt flow subunits were drilled, separated only by thin chilled margins. The lack of any sediment or significant alteration at the contacts, and their consistent paleomagnetic inclination, all suggest that these flows were erupted in relatively quick succession. Accordingly, geochemical variations are minimal. Samples from Site U1577 form tight clusters that overlap in major and trace elements with previous dredge and Deep Sea Drilling Project (DSDP) drill site samples from the Walvis Ridge. All are less enriched in incompatible trace elements, i.e., Ti, K, P, Sr and Zr, relative to samples from Tristan and Gough islands and the Guyot province, consistent with Walvis Ridge samples formed by higher degrees of partial melting. In contrast to Walvis Ridge dredge samples, Site U1577 samples are shifted slightly towards higher 176Hf/177Hf and lower 208Pb/204Pb isotopic compositions, while overlapping in 207Pb/204Pb vs. 206Pb/204Pb as well as Sr-Nd isotopic compositions. Such elevated 176Hf/177Hf combined with lower 208Pb/204Pb isotopic compositions have otherwise only been reported from the Eastern Rio Grande Rise formed in near-/on-ridge position. Magnetic lineations imply formation of Valdivia Bank by seafloor spreading as well. Site U1577 samples provide geochemical support for this hypothesis whereas dredge samples lack signatures of plume-ridge interaction. Also, with Site U1577 on the eastern flank, it is farthest from the mid-Atlantic Ridge at the time of formation compared to the location of near-by dredge samples. With major and trace element data integrated on the same samples as isotopic compositions, we will address the contrasting possibilities of an integral depleted plume component versus evidence for plume-ridge interaction.more » « less
An official website of the United States government

