skip to main content


Title: Preparation of Metrological States in Dipolar-Interacting Spin Systems
Spin systems are an attractive candidate for quantum-enhanced metrology. Here we develop a variational method to generate metrological states in small dipolar-interacting ensembles with limited qubit controls and unknown spin locations. The generated states enable sensing beyond the standard quantum limit (SQL) and approaching the Heisenberg limit (HL). Depending on the circuit depth and the level of readout noise, the resulting states resemble Greenberger-Horne-Zeilinger (GHZ) states or Spin Squeezed States (SSS). Sensing beyond the SQL holds in the presence of finite spin polarization and a non-Markovian noise environment.  more » « less
Award ID(s):
2040520 1936118
NSF-PAR ID:
10374042
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
ArXivorg
ISSN:
2331-8422
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Spin systems are an attractive candidate for quantum-enhanced metrology. Here we develop a variational method to generate metrological states in small dipolar-interacting spin ensembles with limited qubit control. For both regular and disordered spatial spin configurations the generated states enable sensing beyond the standard quantum limit (SQL) and, for small spin numbers, approach the Heisenberg limit (HL). Depending on the circuit depth and the level of readout noise, the resulting states resemble Greenberger-Horne-Zeilinger (GHZ) states or Spin Squeezed States (SSS). Sensing beyond the SQL holds in the presence of finite spin polarization and a non-Markovian noise environment. The developed black-box optimization techniques for small spin numbers (N ≤ 10) are directly applicable to diamond-based nanoscale field sensing, where the sensor size limitsNand conventional squeezing approaches fail.

     
    more » « less
  2. Recent developments in atomic physics have enabled the experimental generation of many-body entangled states to boost the performance of quantum sensors beyond the Standard Quantum Limit (SQL). This limit is imposed by the inherent projection noise of a quantum measurement. In this Perspective article, we describe the commonly used experimental methods to create many-body entangled states to operate quantum sensors beyond the SQL. In particular, we focus on the potential of applying quantum entanglement to state-of-the-art optical atomic clocks. In addition, we present recently developed time-reversal protocols that make use of complex states with high quantum Fisher information without requiring sub-SQL measurement resolution. We discuss the prospects for reaching near-Heisenberg limited quantum metrology based on such protocols. 
    more » « less
  3. The optical lever is a centuries old and widely used detection technique employed in applications ranging from consumer products and industrial sensors to precision force microscopes used in scientific research. However, despite the long history, its quantum limits have yet to be explored. In general, any precision optical measurement is accompanied by optical force induced disturbance to the measured object (termed as back action) leading to a standard quantum limit (SQL). Here, we give a simple ray optics description of how such back action can be evaded in optical lever detection. We perform a proof-of-principle experiment demonstrating the mechanism of back action evasion in the classical regime, by developing a lens system that cancels extra tilting of the reflected light off a silicon nitride membrane mechanical resonator caused by laser-pointing-noise-induced optical torques. We achieve a readout noise floor two orders of magnitude lower than the SQL, corresponding to an effective optomechanical cooperativity of 100 without the need for an optical cavity. As the state-of-the-art ultralow dissipation optomechanical systems relevant for quantum sensing are rapidly approaching the level where quantum noise dominates, simple and widely applicable back action evading protocols will be crucial for pushing beyond quantum limits.

     
    more » « less
  4. Abstract We experimentally demonstrate a new type of spin-mixing interferometry in sodium Bose–Einstein condensates (BECs) based on seeded initial states. Seeding is useful because it speeds up the generation of entangled pairs, allowing many collisions to take place quickly, creating large populations in the arms of the interferometer. The entangled probe states of our interferometer are generated via spin-exchange collisions in F  = 1 spinor BECs, where pairs of atoms with the magnetic quantum number m F = 0 collide and change into pairs with m F = ± 1 . Our results show that our seeded spin-mixing interferometer beats the standard quantum limit (SQL) with a metrological gain of 3.69 dB with spin-mixing time t  = 10 ms in the case of single-sided seeding, and 3.33 dB with spin-mixing time t  = 8 ms in the case of double sided seeding. The mechanism for beating the SQL is two-mode spin squeezing generated via spin-exchange collisions. Our results on spin-mixing interferometry with seeded states are useful for future quantum technologies such as quantum-enhanced microwave sensors, and quantum parametric amplifiers based on spin-mixing. 
    more » « less
  5. Experimental limitations such as optical loss and noise have prevented entanglement-enhanced measurements from demonstrating a significant quantum advantage in sensitivity. Holland-Burnett entangled states can mitigate these limitations and still present a quantum advantage in sensitivity. Here we model a fiber-based Mach-Zehnder interferometer with internal loss, detector efficiency, and external phase noise and without pure entanglement. This model features a practical fiber source that transforms the two-mode squeezed vacuum (TMSV) into Holland-Burnett entangled states. We predict that a phase sensitivity 28% beyond the shot noise limit is feasible with current technology. Simultaneously, a TMSV source can provide about 25 times more photon flux than other entangled sources. This system will make fiber-based quantum-enhanced sensing accessible and practical for remote sensing and probing photosensitive materials. 
    more » « less