skip to main content

This content will become publicly available on March 7, 2023

Title: Preparation of Metrological States in Dipolar-Interacting Spin Systems
Spin systems are an attractive candidate for quantum-enhanced metrology. Here we develop a variational method to generate metrological states in small dipolar-interacting ensembles with limited qubit controls and unknown spin locations. The generated states enable sensing beyond the standard quantum limit (SQL) and approaching the Heisenberg limit (HL). Depending on the circuit depth and the level of readout noise, the resulting states resemble Greenberger-Horne-Zeilinger (GHZ) states or Spin Squeezed States (SSS). Sensing beyond the SQL holds in the presence of finite spin polarization and a non-Markovian noise environment.
Authors:
; ; ; ; ; ; ; ; ;
Award ID(s):
2040520 1936118
Publication Date:
NSF-PAR ID:
10374042
Journal Name:
ArXivorg
ISSN:
2331-8422
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Spin systems are an attractive candidate for quantum-enhanced metrology. Here we develop a variational method to generate metrological states in small dipolar-interacting spin ensembles with limited qubit control. For both regular and disordered spatial spin configurations the generated states enable sensing beyond the standard quantum limit (SQL) and, for small spin numbers, approach the Heisenberg limit (HL). Depending on the circuit depth and the level of readout noise, the resulting states resemble Greenberger-Horne-Zeilinger (GHZ) states or Spin Squeezed States (SSS). Sensing beyond the SQL holds in the presence of finite spin polarization and a non-Markovian noise environment. The developed black-box optimization techniques for small spin numbers (N ≤ 10) are directly applicable to diamond-based nanoscale field sensing, where the sensor size limitsNand conventional squeezing approaches fail.

  2. Recent developments in atomic physics have enabled the experimental generation of many-body entangled states to boost the performance of quantum sensors beyond the Standard Quantum Limit (SQL). This limit is imposed by the inherent projection noise of a quantum measurement. In this Perspective article, we describe the commonly used experimental methods to create many-body entangled states to operate quantum sensors beyond the SQL. In particular, we focus on the potential of applying quantum entanglement to state-of-the-art optical atomic clocks. In addition, we present recently developed time-reversal protocols that make use of complex states with high quantum Fisher information without requiring sub-SQL measurement resolution. We discuss the prospects for reaching near-Heisenberg limited quantum metrology based on such protocols.
  3. Experimental limitations such as optical loss and noise have prevented entanglement-enhanced measurements from demonstrating a significant quantum advantage in sensitivity. Holland-Burnett entangled states can mitigate these limitations and still present a quantum advantage in sensitivity. Here we model a fiber-based Mach-Zehnder interferometer with internal loss, detector efficiency, and external phase noise and without pure entanglement. This model features a practical fiber source that transforms the two-mode squeezed vacuum (TMSV) into Holland-Burnett entangled states. We predict that a phase sensitivity 28% beyond the shot noise limit is feasible with current technology. Simultaneously, a TMSV source can provide about 25 times more photon flux than other entangled sources. This system will make fiber-based quantum-enhanced sensing accessible and practical for remote sensing and probing photosensitive materials.
  4. Quantum states of light can enable sensing configurations with sensitivities beyond the shot-noise limit (SNL). In order to better take advantage of available quantum resources and obtain the maximum possible sensitivity, it is necessary to determine fundamental sensitivity limits for different possible configurations for a given sensing system. Here, due to their wide applicability, we focus on optical resonance sensors, which detect a change in a parameter of interest through a resonance shift. We compare their fundamental sensitivity limits set by the quantum Cramér-Rao bound (QCRB) based on the estimation of changes in transmission or phase of a probing bright two-mode squeezed state (bTMSS) of light. We show that the fundamental sensitivity results from an interplay between the QCRB and the transfer function of the system. As a result, for a resonance sensor with a Lorentzian lineshape a phase-based scheme outperforms a transmission-based one for most of the parameter space; however, this is not the case for lineshapes with steeper slopes, such as higher order Butterworth lineshapes. Furthermore, such an interplay results in conditions under which the phase-based scheme provides a higher sensitivity but a smaller degree of quantum enhancement than the transmission-based scheme. We also study the effect ofmore »losses external to the sensor on the degree of quantum enhancement and show that for certain conditions, probing with a classical state can provide a higher sensitivity than probing with a bTMSS. Finally, we discuss detection schemes, namely optimized intensity-difference and optimized homodyne detection, that can achieve the fundamental sensitivity limits even in the presence of external losses.« less
  5. Photogenerated spin-correlated radical pairs (SCRPs) in electron donor–bridge–acceptor (D–B–A) molecules can act as molecular qubits and inherently spin qubit pairs. SCRPs can take singlet and triplet spin states, comprising the quantum superposition state. Their synthetic accessibility and well-defined structures, together with their ability to be prepared in an initially pure, entangled spin state and optical addressability, make them one of the promising avenues for advancing quantum information science. Coherence between two spin states and spin selective electron transfer reactions form the foundation of using SCRPs as qubits for sensing. We can exploit the unique sensitivity of the spin dynamics of SCRPs to external magnetic fields for sensing applications including resolution-enhanced imaging, magnetometers, and magnetic switch. Molecular quantum sensors, if realized, can provide new technological developments beyond what is possible with classical counterparts. While the community of spin chemistry has actively investigated magnetic field effects on chemical reactions via SCRPs for several decades, we have not yet fully exploited the synthetic tunability of molecular systems to our advantage. This review offers an introduction to the photogenerated SCRPs-based molecular qubits for quantum sensing, aiming to lay the foundation for researchers new to the field and provide a basic reference for researchers activemore »in the field. We focus on the basic principles necessary to construct molecular qubits based on SCRPs and the examples in quantum sensing explored to date from the perspective of the experimentalist.« less