skip to main content


Title: Demystifying Limited Adversarial Transferability in Automatic Speech Recognition Systems
The targeted transferability of adversarial samples enables attackers to exploit black-box models in the real-world. The most popular method to produce these adversarial samples is optimization attacks, which have been shown to achieve a high level of transferability in some domains. However, recent research has demonstrated that these attack samples fail to transfer when applied to Automatic Speech Recognition Systems (ASRs). In this paper, we investigate factors preventing this transferability via exhaustive experimentation. To do so, we perform an ablation study on each stage of the ASR pipeline. We discover and quantify six factors (i.e., input type, MFCC, RNN, output type, and vocabulary and sequence sizes) that impact the targeted transferability of optimization attacks against ASRs. Future research can leverage our findings to build ASRs that are more robust to other transferable attack types (e.g., signal processing attacks), or to modify architectures in other domains to reduce their exposure to targeted transferability of optimization attacks.  more » « less
Award ID(s):
1933208
NSF-PAR ID:
10374196
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
International Conference on Learning Representations (ICLR)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Despite many attempts, the state-of-the-art of adversarial machine learning on malware detection systems generally yield unexecutable samples. In this work, we set out to examine the robustness of visualization-based malware detection system against adversarial examples (AEs) that not only are able to fool the model, but also maintain the executability of the original input. As such, we first investigate the application of existing off-the-shelf adversarial attack approaches on malware detection systems through which we found that those approaches do not necessarily maintain the functionality of the original inputs. Therefore, we proposed an approach to generate adversarial examples, COPYCAT, which is specifically designed for malware detection systems considering two main goals; achieving a high misclassification rate and maintaining the executability and functionality of the original input. We designed two main configurations for COPYCAT, namely AE padding and sample injection. While the first configuration results in untargeted misclassification attacks, the sample injection configuration is able to force the model to generate a targeted output, which is highly desirable in the malware attribution setting. We evaluate the performance of COPYCAT through an extensive set of experiments on two malware datasets, and report that we were able to generate adversarial samples that are misclassified at a rate of 98.9% and 96.5% with Windows and IoT binary datasets, respectively, outperforming the misclassification rates in the literature. Most importantly, we report that those AEs were executable unlike AEs generated by off-the-shelf approaches. Our transferability study demonstrates that the generated AEs through our proposed method can be generalized to other models. 
    more » « less
  2. The burgeoning fields of machine learning (ML) and quantum machine learning (QML) have shown remarkable potential in tackling complex problems across various domains. However, their susceptibility to adversarial attacks raises concerns when deploying these systems in security-sensitive applications. In this study, we present a comparative analysis of the vulnerability of ML and QML models, specifically conventional neural networks (NN) and quantum neural networks (QNN), to adversarial attacks using a malware dataset. We utilize a software supply chain attack dataset known as ClaMP and develop two distinct models for QNN and NN, employing Pennylane for quantum implementations and TensorFlow and Keras for traditional implementations. Our methodology involves crafting adversarial samples by introducing random noise to a small portion of the dataset and evaluating the impact on the models’ performance using accuracy, precision, recall, and F1 score metrics. Based on our observations, both ML and QML models exhibit vulnerability to adversarial attacks. While the QNN’s accuracy decreases more significantly compared to the NN after the attack, it demonstrates better performance in terms of precision and recall, indicating higher resilience in detecting true positives under adversarial conditions. We also find that adversarial samples crafted for one model type can impair the performance of the other, highlighting the need for robust defense mechanisms. Our study serves as a foundation for future research focused on enhancing the security and resilience of ML and QML models, particularly QNN, given its recent advancements. A more extensive range of experiments will be conducted to better understand the performance and robustness of both models in the face of adversarial attacks. 
    more » « less
  3. Automatic Speech Recognition (ASR) systems convert speech into text and can be placed into two broad categories: traditional and fully end-to-end. Both types have been shown to be vulnerable to adversarial audio examples that sound benign to the human ear but force the ASR to produce malicious transcriptions. Of these attacks, only the "psychoacoustic" attacks can create examples with relatively imperceptible perturbations, as they leverage the knowledge of the human auditory system. Unfortunately, existing psychoacoustic attacks can only be applied against traditional models, and are obsolete against the newer, fully end-to-end ASRs. In this paper, we propose an equalization-based psychoacoustic attack that can exploit both traditional and fully end-to-end ASRs. We successfully demonstrate our attack against real-world ASRs that include DeepSpeech and Wav2Letter. Moreover, we employ a user study to verify that our method creates low audible distortion. Specifically, 80 of the 100 participants voted in favor of all our attack audio samples as less noisier than the existing state-of-the-art attack. Through this, we demonstrate both types of existing ASR pipelines can be exploited with minimum degradation to attack audio quality. 
    more » « less
  4. Audio CAPTCHAs are supposed to provide a strong defense for online resources; however, advances in speech-to-text mechanisms have rendered these defenses ineffective. Audio CAPTCHAs cannot simply be abandoned, as they are specifically named by the W3C as important enablers of accessibility. Accordingly, demonstrably more robust audio CAPTCHAs are important to the future of a secure and accessible Web. We look to recent literature on attacks on speech-to-text systems for inspiration for the construction of robust, principle-driven audio defenses. We begin by comparing 20 recent attack papers, classifying and measuring their suitability to serve as the basis of new "robust to transcription" but "easy for humans to understand" CAPTCHAs. After showing that none of these attacks alone are sufficient, we propose a new mechanism that is both comparatively intelligible (evaluated through a user study) and hard to automatically transcribe (i.e., $P({rm transcription}) = 4 times 10^{-5}$). We also demonstrate that our audio samples have a high probability of being detected as CAPTCHAs when given to speech-to-text systems ($P({rm evasion}) = 1.77 times 10^{-4}$). Finally, we show that our method is robust to WaveGuard, a popular mechanism designed to defeat adversarial examples (and enable ASRs to output the original transcript instead of the adversarial one). We show that our method can break WaveGuard with a 99% success rate. In so doing, we not only demonstrate a CAPTCHA that is approximately four orders of magnitude more difficult to crack, but that such systems can be designed based on the insights gained from attack papers using the differences between the ways that humans and computers process audio. 
    more » « less
  5. Automatic Speech Recognition (ASR) systems are widely used in various online transcription services and personal digital assistants. Emerging lines of research have demonstrated that ASR systems are vulnerable to hidden voice commands, i.e., audio that can be recognized by ASRs but not by humans. Such attacks, however, often either highly depend on white-box knowledge of a specific machine learning model or require special hardware to construct the adversarial audio. This paper proposes a new model-agnostic and easily-constructed attack, called CommanderGabble, which uses fast speech to camouflage voice commands. Both humans and ASR systems often misinterpret fast speech, and such misinterpretation can be exploited to launch hidden voice command attacks. Specifically, by carefully manipulating the phonetic structure of a target voice command, ASRs can be caused to derive a hidden meaning from the manipulated, high-speed version. We implement the discovered attacks both over-the-wire and over-the-air, and conduct a suite of experiments to demonstrate their efficacy against 7 practical ASR systems. Our experimental results show that the over-the-wire attacks can disguise as many as 96 out of 100 tested voice commands into adversarial ones, and that the over-the-air attacks are consistently successful for all 18 chosen commands in multiple real-world scenarios. 
    more » « less