skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An alternative, dynamic density functional-like theory for time-dependent density fluctuations in glass-forming fluids
We propose an alternative theory for the relaxation of density fluctuations in glass-forming fluids. We derive an equation of motion for the density correlation function that is local in time and is similar in spirit to the equation of motion for the average non-uniform density profile derived within the dynamic density functional theory. We identify the Franz–Parisi free energy functional as the non-equilibrium free energy for the evolution of the density correlation function. An appearance of a local minimum of this functional leads to a dynamic arrest. Thus, the ergodicity breaking transition predicted by our theory coincides with the dynamic transition of the static approach based on the same non-equilibrium free energy functional.  more » « less
Award ID(s):
1800282
PAR ID:
10374269
Author(s) / Creator(s):
Date Published:
Journal Name:
The Journal of Chemical Physics
Volume:
156
Issue:
19
ISSN:
0021-9606
Page Range / eLocation ID:
191102
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Strong electron correlation plays an important role in transition-metal and heavy-metal chemistry, magnetic molecules, bond breaking, biradicals, excited states, and many functional materials, but it provides a significant challenge for modern electronic structure theory. The treatment of strongly correlated systems usually requires a multireference method to adequately describe spin densities and near-degeneracy correlation. However, quantitative computation of dynamic correlation with multireference wave functions is often difficult or impractical. Multiconfiguration pair-density functional theory (MC-PDFT) provides a way to blend multiconfiguration wave function theory and density functional theory to quantitatively treat both near-degeneracy correlation and dynamic correlation in strongly correlated systems; it is more affordable than multireference perturbation theory, multireference configuration interaction, or multireference coupled cluster theory and more accurate for many properties than Kohn–Sham density functional theory. This perspective article provides a brief introduction to strongly correlated systems and previously reviewed progress on MC-PDFT followed by a discussion of several recent developments and applications of MC-PDFT and related methods, including localized-active-space MC-PDFT, generalized active-space MC-PDFT, density-matrix-renormalization-group MC-PDFT, hybrid MC-PDFT, multistate MC-PDFT, spin–orbit coupling, analytic gradients, and dipole moments. We also review the more recently introduced multiconfiguration nonclassical-energy functional theory (MC-NEFT), which is like MC-PDFT but allows for other ingredients in the nonclassical-energy functional. We discuss two new kinds of MC-NEFT methods, namely multiconfiguration density coherence functional theory and machine-learned functionals. 
    more » « less
  2. It is demonstrated that a double hybrid density functional approximation, ωB88PTPSS, that incorporates equipartition of density functional theory and the non-local correlation, however with a meta-generalized gradient approximation correlation functional, as well as with the range-separated exchange of ωB2PLYP, provides accurate excitation energies for conventional systems, as well as correct prescription of negative singlet–triplet gaps for non-conventional systems with inverted gaps, without any necessity for parametric scaling of the same-spin and opposite-spin non-local correlation energies. Examined over “safe” excitations of the QUESTDB set, ωB88PTPSS performs quite well for open-shell systems, correctly and fairly accurately [relative to equation-of-motion coupled-cluster singles and doubles (EOM-CCSD) reference] predicts negative gaps for 50 systems with inverted singlet–triplet gaps, and is one of the leading performers for intramolecular charge-transfer excitations and achieves near-second-order approximate coupled cluster (CC2) and second-order algebraic diagrammatic construction quality for the Q1 and Q2 subsets. Subsequently, we tested ωB88PTPSS on two sets of real-life examples from recent computational chemistry literature–the low energy bands of chlorophyll a (Chl a) and a set of thermally activated delayed fluorescence (TADF) systems. For Chl a, ωB88PTPSS qualitatively and quantitatively achieves DLPNO-STEOM-CCSD-level performance and provides excellent agreement with experiment. For TADF systems, ωB88PTPSS agrees quite well with spin-component-scaled CC2 (SCS-CC2) excitation energies, as well as experimental values, for the gaps between the S1 and T1 excited states. 
    more » « less
  3. Kohn-Sham density functional theory with the available exchange–correlation functionals is less accurate for strongly correlated systems, which require a multiconfigurational description as a zero-order function, than for weakly correlated systems, and available functionals of the spin densities do not accurately predict energies for many strongly correlated systems when one uses multiconfigurational wave functions with spin symmetry. Furthermore, adding a correlation functional to a multiconfigurational reference energy can lead to double counting of electron correlation. Multiconfiguration pair-density functional theory (MC-PDFT) overcomes both obstacles, the second by calculating the quantum mechanical part of the electronic energy entirely by a functional, and the first by using a functional of the total density and the on-top pair density rather than the spin densities. This allows one to calculate the energy of strongly correlated systems efficiently with a pair-density functional and a suitable multiconfigurational reference function. This article reviews MC-PDFT and related background information. 
    more » « less
  4. Abstract By summarizing the constraint-based development of orbital-free free-energy density functional approximations, we provide a perspective on progress over the last 15 years, the limitations of existing functionals, and the challenges awaiting resolution. We outline the chronology of the development of non-interacting and exchange-correlation free-energy orbital-free functionals and summarize the theoretical basis of existing local density approximation (LDA), second-order approximation, generalized gradient approximation (GGA), and meta-GGAs. We discuss limitations and challenges such as problems with thermodynamic derivatives, free-energy nonadditivity and the closely related issue of all-electron versus valence-only local pseudo-potential performance. 
    more » « less
  5. In this work, we introduce the concept of a tunable noninteracting free-energy density functional and present two examples realized: (i) via a simple one-parameter convex combination of two existing functionals and (ii) via the construction of a generalized gradient approximation (GGA) enhancement factor that contains one free parameter and is designed to satisfy a set of incorporated constraints. Functional (i), constructed as a combination of the local Thomas–Fermi and a pseudopotential-adapted GGA for the noninteracting free-energy, has already demonstrated its practical usability for establishing the high temperature end of the equation of state of deuterium [Phys. Rev. B 104, 144104 (2021)] and CHON resin [Phys. Rev. E 106, 045207 (2022)] for inertial confinement fusion applications. Hugoniot calculations for liquid deuterium are given as another example of how the application of computationally efficient orbital-free density functional theory (OF-DFT) can be utilized with the employment of the developed functionals. Once the functionals have been tuned such that the OF-DFT Hugoniot calculation matches the Kohn–Sham solution at some low-temperature point, agreement with the reference Kohn–Sham results for the rest of the high temperature Hugoniot path is very good with relative errors for compression and pressure on the order of 2% or less. 
    more » « less