skip to main content


Title: An alternative, dynamic density functional-like theory for time-dependent density fluctuations in glass-forming fluids
We propose an alternative theory for the relaxation of density fluctuations in glass-forming fluids. We derive an equation of motion for the density correlation function that is local in time and is similar in spirit to the equation of motion for the average non-uniform density profile derived within the dynamic density functional theory. We identify the Franz–Parisi free energy functional as the non-equilibrium free energy for the evolution of the density correlation function. An appearance of a local minimum of this functional leads to a dynamic arrest. Thus, the ergodicity breaking transition predicted by our theory coincides with the dynamic transition of the static approach based on the same non-equilibrium free energy functional.  more » « less
Award ID(s):
1800282
NSF-PAR ID:
10374269
Author(s) / Creator(s):
Date Published:
Journal Name:
The Journal of Chemical Physics
Volume:
156
Issue:
19
ISSN:
0021-9606
Page Range / eLocation ID:
191102
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. It is demonstrated that a double hybrid density functional approximation, ωB88PTPSS, that incorporates equipartition of density functional theory and the non-local correlation, however with a meta-generalized gradient approximation correlation functional, as well as with the range-separated exchange of ωB2PLYP, provides accurate excitation energies for conventional systems, as well as correct prescription of negative singlet–triplet gaps for non-conventional systems with inverted gaps, without any necessity for parametric scaling of the same-spin and opposite-spin non-local correlation energies. Examined over “safe” excitations of the QUESTDB set, ωB88PTPSS performs quite well for open-shell systems, correctly and fairly accurately [relative to equation-of-motion coupled-cluster singles and doubles (EOM-CCSD) reference] predicts negative gaps for 50 systems with inverted singlet–triplet gaps, and is one of the leading performers for intramolecular charge-transfer excitations and achieves near-second-order approximate coupled cluster (CC2) and second-order algebraic diagrammatic construction quality for the Q1 and Q2 subsets. Subsequently, we tested ωB88PTPSS on two sets of real-life examples from recent computational chemistry literature–the low energy bands of chlorophyll a (Chl a) and a set of thermally activated delayed fluorescence (TADF) systems. For Chl a, ωB88PTPSS qualitatively and quantitatively achieves DLPNO-STEOM-CCSD-level performance and provides excellent agreement with experiment. For TADF systems, ωB88PTPSS agrees quite well with spin-component-scaled CC2 (SCS-CC2) excitation energies, as well as experimental values, for the gaps between the S1 and T1 excited states. 
    more » « less
  2. Strong electron correlation plays an important role in transition-metal and heavy-metal chemistry, magnetic molecules, bond breaking, biradicals, excited states, and many functional materials, but it provides a significant challenge for modern electronic structure theory. The treatment of strongly correlated systems usually requires a multireference method to adequately describe spin densities and near-degeneracy correlation. However, quantitative computation of dynamic correlation with multireference wave functions is often difficult or impractical. Multiconfiguration pair-density functional theory (MC-PDFT) provides a way to blend multiconfiguration wave function theory and density functional theory to quantitatively treat both near-degeneracy correlation and dynamic correlation in strongly correlated systems; it is more affordable than multireference perturbation theory, multireference configuration interaction, or multireference coupled cluster theory and more accurate for many properties than Kohn–Sham density functional theory. This perspective article provides a brief introduction to strongly correlated systems and previously reviewed progress on MC-PDFT followed by a discussion of several recent developments and applications of MC-PDFT and related methods, including localized-active-space MC-PDFT, generalized active-space MC-PDFT, density-matrix-renormalization-group MC-PDFT, hybrid MC-PDFT, multistate MC-PDFT, spin–orbit coupling, analytic gradients, and dipole moments. We also review the more recently introduced multiconfiguration nonclassical-energy functional theory (MC-NEFT), which is like MC-PDFT but allows for other ingredients in the nonclassical-energy functional. We discuss two new kinds of MC-NEFT methods, namely multiconfiguration density coherence functional theory and machine-learned functionals. 
    more » « less
  3. This computational study characterises charge-transfer-to-solvent (CTTS) states of aqueous thiocyanate anion using equation-of-motion coupled-cluster methods combined with electrostatic embedding quantum mechanics/molecular mechanics (QM/MM) scheme. Equilibrium sampling was carried out using classical molecular dynamics (MD) with standard force-fields and QM/MM ab initio molecular dynamics (AIMD) using density functional theory. The two calculations yield significantly different local structure around solvated SCN− . Because of the diffuse character of CTTS states, they are very sensitive to the local structure of solvent around the solute and its dynamic fluctuations. Owing to this sensitivity, the spectra computed using MD and AIMD based snapshots differ considerably. This sensitivity suggests that the spectroscopy exploiting CTTS transitions can provide an experimental handle for assessing the quality of force-fields and density functionals. By combining CTTS-based spectroscopies with reliable theoretical modeling, detailed microscopic information of the solvent structure can be obtained. We present a robust computational protocol for modeling spectra of solvated anions and emphasise the use of an ab initio characterization of individual electronic transitions as CTTS or local excitations. 
    more » « less
  4. Abstract

    An in‐depth theoretical analysis of key chemical equilibria in Signal Amplification by Reversible Exchange (SABRE) is provided, employing density functional theory calculations to characterize the likely reaction network. For all reactions in the network, the potential energy surface is probed to identify minimum energy pathways. Energy barriers and transition states are calculated, and harmonic transition state theory is applied to calculate exchange rates that approximate experimental values. The reaction network energy surface can be modulated by chemical potentials that account for the dependence on concentration, temperature, and partial pressure of molecular constituents (hydrogen, methanol, pyridine) supplied to the experiment under equilibrium conditions. We show that, under typical experimental conditions, the Gibbs free energies of the two key states involved in pyridine‐hydrogen exchange at the common Ir‐IMes catalyst system in methanol are essentially the same, i. e., nearly optimal for SABRE. We also show that a methanol‐containing intermediate is plausible as a transient species in the process.

     
    more » « less
  5. Understanding, predicting, and ultimately controlling exciton band structure and exciton dynamics are central to diverse chemical and materials problems. Here, we have developed a first-principles method to determine exciton dispersion and exciton–phonon interaction in semiconducting and insulating solids based on time-dependent density functional theory. The first-principles method is formulated in planewave bases and pseudopotentials and can be used to compute exciton band structures, exciton charge density, ionic forces, the non-adiabatic coupling matrix between excitonic states, and the exciton–phonon coupling matrix. Based on the spinor formulation, the method enables self-consistent noncollinear calculations to capture spin-orbital coupling. Hybrid exchange-correlation functionals are incorporated to deal with long-range electron–hole interactions in solids. A sub-Hilbert space approximation is introduced to reduce the computational cost without loss of accuracy. For validations, we have applied the method to compute the exciton band structure and exciton–phonon coupling strength in transition metal dichalcogenide monolayers; both agree very well with the previous GW-Bethe–Salpeter equation and experimental results. This development paves the way for accurate determinations of exciton dynamics in a wide range of solid-state materials.

     
    more » « less