Foundation species structure communities, promote biodiversity, and stabilize ecosystem processes by creating locally stable environmental conditions. Despite their critical importance, the role of foundation species in stabilizing natural communities has seldom been quantified. In theory, the stability of a foundation species should promote community stability by enhancing species richness, altering the population fluctuations of individual species, or both. Here we tested the hypothesis that the stability of a marine foundation species, the giant kelp
- Award ID(s):
- 1831937
- PAR ID:
- 10374394
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Ecology
- Volume:
- 101
- Issue:
- 5
- ISSN:
- 0012-9658
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Foundation species traits that structure communities are rarely experimentally examined; thus, a predictive understanding of their functions lags behind patterns of observed species associations. Red mangrove Rhizophora mangle roots form complex living habitats that support diverse epibiont communities, making them a model system for testing links between variation in foundation species traits and associated biodiversity. Here, we compared epibiont community composition between living and non-living mangrove roots, as well as root mimics, to test how foundation species traits affect community structure. We also quantified the community structure of associated mobile invertebrates to examine their relationship with secondary foundation species (e.g. sponges, bivalves) that grow on the roots. After 14 mo of colonization and succession, substrate composition (i.e. mangrove, wood, PVC) had significant effects on community composition, richness, and abundance of sessile epibionts and mobile invertebrates. Non-living mangrove roots were 5 times more likely to deteriorate, and consequently had the lowest epibiont richness and abundance. We found strong positive relationships between mobile invertebrate richness and the abundance, measured as biomass, and richness of sponges and bivalves, suggesting that variation among roots in secondary foundation species play an important role in mediating mobile invertebrate community composition. This study highlights the functional role of habitat structure and how rapidly that function can be lost without biogenic maintenance. Our results indicate the importance of facilitation cascades in fostering diverse mobile invertebrate communities and highlight both advantages and limitations in using artificial structures in restoration programs.more » « less
-
Abstract Biodiversity can stabilize ecological communities through biological insurance, but climate and other environmental changes may disrupt this process via simultaneous ecosystem destabilization and biodiversity loss. While changes to diversity–stability relationships (DSRs) and the underlying mechanisms have been extensively explored in terrestrial plant communities, this topic remains largely unexplored in benthic marine ecosystems that comprise diverse assemblages of producers and consumers. By analyzing two decades of kelp forest biodiversity survey data, we discovered changes in diversity, stability, and their relationships at multiple scales (biological organizational levels, spatial scales, and functional groups) that were linked with the most severe marine heatwave ever documented in the North Pacific Ocean. Moreover, changes in the strength of DSRs during/after the heatwave were more apparent among functional groups than both biological organizational levels (population vs. ecosystem levels) and spatial scales (local vs. broad scales). Specifically, the strength of DSRs decreased for fishes, increased for mobile invertebrates and understory algae, and were unchanged for sessile invertebrates during/after the heatwave. Our findings suggest that biodiversity plays a key role in stabilizing marine ecosystems, but the resilience of DSRs to adverse climate impacts primarily depends on the functional identities of ecological communities.
-
Abstract Ocean warming has both direct physiological and indirect ecological consequences for marine organisms. Sessile animals may be particularly vulnerable to anomalous warming given constraints in food acquisition and reproduction imposed by sessility. In temperate reef ecosystems, sessile suspension feeding invertebrates provide food for an array of mobile species and act as a critical trophic link between the plankton and the benthos. Using 14 years of seasonal benthic community data across five coastal reefs, we evaluated how communities of sessile invertebrates in southern California kelp forests responded to the “Blob”, a period of anomalously high temperatures and low phytoplankton production. We show that this event had prolonged consequences for kelp forest ecosystems. Changes to community structure, including species invasions, have persisted six years post-Blob, suggesting that a climate-driven shift in California kelp forests is underway.
-
Abstract Identifying the factors that destabilize communities is critical for predicting and mitigating the ecological impacts of environmental change. Although theory has shown that local ecosystem size and regional dispersal can determine biodiversity, less is known about the direct and indirect effects of these factors on community stability. Here we show that multitrophic community instability of invertebrates and fishes in coastal ponds is negatively related to local pond size and positively related to distance to the ocean, a proxy for dispersal limitation. Importantly, the effects of pond size and distance on instability were direct rather than indirectly mediated by species richness. This suggests that the diversity–stability relationship is an epiphenomenon whose resolution is neither necessary nor sufficient to understand the stability of these multitrophic communities. Instead, well‐established and easily measured local and regional factors historically linked to species richness can be used to predict multitrophic community stability in a variable world.
-
Invasive species are a growing threat to conservation in marine ecosystems, yet we lack a predictive understanding of ecological factors that influence the invasiveness of exotic marine species. We used surveys and manipulative experiments to investigate how an exotic seaweed, Sargassum horneri, interacts with native macroalgae and herbivores off the coast of California. We asked whether the invasion (i.e., the process by which an exotic species exhibits rapid population growth and spread in the novel environment) of S. horneri is influenced by three mechanisms known to affect the invasion of exotic plants on land: competition, niche complementarity and herbivory. We found that the removal of S. horneri over 3.5 years from experimental plots had little effect on the biomass or taxonomic richness of the native algal community. Differences between removal treatments were apparent only in spring at the end of the experiment when S. horneri biomass was substantially higher than in previous sampling periods. Surveys across a depth range of 0–30 m revealed inverse patterns in the biomass of S. horneri and native subcanopy-forming macroalgae, with S. horneri peaking at intermediate depths (5–20 m) while the aggregated biomass of native species was greatest at shallow (<5 m) and deeper (>20 m) depths. The biomass of S. horneri and native algae also displayed different seasonal trends, and removal of S. horneri from experimental plots indicated the seasonality of native algae was largely unaffected by fluctuations in S. horneri. Results from grazing assays and surveys showed that native herbivores favor native kelp over Sargassum as a food source, suggesting that reduced palatability may help promote the invasion of S. horneri. The complementary life histories of S. horneri and native algae suggest that competition between them is generally weak, and that niche complementarity and resistance to grazing are more important in promoting the invasion success of S. horneri.more » « less