Abstract Orientations of active antithetic faults can provide useful constraints on in situ strength of the seismogenic crust. We use LINSCAN, a new unsupervised learning algorithm for identifying quasi‐linear clusters of earthquakes, to map small‐scale strike‐slip faults in the Anza‐Borrego shear zone, Southern California. We identify 332 right‐ and left‐lateral faults having lengths between 0.1 and 3 km. The dihedral angles between all possible pairs of conjugate faults are nearly normally distributed around 70°, with a standard deviation of ∼30°. The observed dihedral angles are larger than those expected assuming optimal fault orientations and the coefficient of friction of 0.6–0.8, but similar to the distribution previously reported for the Ridgecrest area in the Eastern California Shear Zone. We show that the observed fault orientations can be explained by fault rotation away from the principal shortening axis due to a cumulated tectonic strain.
more »
« less
Estimation of Absolute Stress in the Hypocentral Region of the 2019 Ridgecrest, California, Earthquakes
Abstract Strength of the upper brittle part of the Earth's lithosphere controls deformation styles in tectonically active regions, surface topography, seismicity, and the occurrence of plate tectonics, yet it remains one of the most debated quantities in geophysics. Direct measurements of stresses acting at seismogenic depths are largely lacking. Seismic data (in particular, earthquake focal mechanisms) have been used to infer orientation of the principal stress axes. I show that the focal mechanism data can be combined with information from precise earthquake locations to place constraints not only on the orientation, but also on the magnitude of absolute stress at depth. The proposed method uses relative attitudes of conjugate faults to evaluate the amplitude and spatial heterogeneity of the deviatoric stress and frictional strength in the seismogenic zone. Relative fault orientations (dihedral angles) and sense of slip are determined using quasi‐planar clusters of seismicity and their composite focal mechanisms. The observed distribution of dihedral angles between active conjugate faults in the area of Ridgecrest (California, USA) that hosted a recent sequence of strong earthquakes suggests in situ coefficient of friction of 0.4–0.6, and depth‐averaged shear stress on the order of 25–40 MPa, intermediate between predictions of the “strong” and “weak” fault theories.
more »
« less
- Award ID(s):
- 1841273
- PAR ID:
- 10374411
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Solid Earth
- Volume:
- 126
- Issue:
- 7
- ISSN:
- 2169-9313
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Fault-zone fluids control effective normal stress and fault strength. While most earthquake models assume a fixed pore fluid pressure distribution, geologists have documented fault valving behavior, that is, cyclic changes in pressure and unsteady fluid migration along faults. Here we quantify fault valving through 2-D antiplane shear simulations of earthquake sequences on a strike-slip fault with rate-and-state friction, upward Darcy flow along a permeable fault zone, and permeability evolution. Fluid overpressure develops during the interseismic period, when healing/sealing reduces fault permeability, and is released after earthquakes enhance permeability. Coupling between fluid flow, permeability and pressure evolution, and slip produces fluid-driven aseismic slip near the base of the seismogenic zone and earthquake swarms within the seismogenic zone, as ascending fluids pressurize and weaken the fault. This model might explain observations of late interseismic fault unlocking, slow slip and creep transients, swarm seismicity, and rapid pressure/stress transmission in induced seismicity sequences.more » « less
-
Abstract We attempt to clarify processes associated with the 2019 Ridgecrest earthquake sequence by analyzing space‐time variations of seismicity, potency values, and focal mechanisms of earthquakes leading to and during the sequence. Over the 20 years before theMw7.1 mainshock, the percentage of normal faulting events decreased gradually from 25% to below 10%, indicating a long‐term increase of shear stress. TheMw6.4 andMw7.1 ruptures terminated at areas with strong changes of seismic velocity or intersections with other faults producing arresting barriers. The aftershocks are characterized by highly diverse focal mechanisms and produced volumetric brittle deformation concentrated in a 5–10 km wide zone around the main ruptures. Early aftershocks of theMw7.1 event extended over a wide area below typical seismogenic depth, consistent with a transient deepening of the brittle‐ductile transition. The Ridgecrest earthquake sequence produced considerable rock damage in the surrounding crust including below the nominal seismogenic zone.more » « less
-
The potential relationship between surface creep and deeper geological processes is unclear, even on one of the world’s best-studied faults. From June to August 2021, a large creep event with surface slip of more than 16 mm was recorded on the Calaveras fault in California, part of the San Andreas fault system. This event initially appeared to be accompanied by along-fault migration of seismicity, suggesting it penetrated to depth. Other studies have suggested that surface creep events are likely a shallow feature, unrelated to deep seismicity. To provide more detail on the relationship between earthquakes, surface creep, and potential aseismic slip at seismogenic depth, we tripled the number of earthquakes in the Northern California Earthquake Catalog in the region of the creep event for all of 2021. This was accomplished by implementing earthquake detection techniques based on both template matching (EQCorrscan) and AI-based automatic earthquake phase picking (PhaseNet). After manual inspection, the detected earthquakes were first located using Hypoinverse and subsequently relocated via GrowClust. Our enhanced catalog indicates that the spatiotemporal pattern of earthquakes here is not strongly influenced by the creep event and is better explained by structural heterogeneity than transient stress changes, indicating a decoupling of seismicity rate and surficial creep on this major fault.more » « less
-
ABSTRACT The July 2019 Ridgecrest, California, earthquake sequence involved two large events—the M 6.4 foreshock and the M 7.1 mainshock that ruptured a system of intersecting strike-slip faults. We present analysis of space geodetic observations including Synthetic Aperture Radar and Global Navigation Satellite System data, geological field mapping, and seismicity to constrain the subsurface rupture geometry and slip distribution. The data render a complex pattern of faulting with a number of subparallel as well as cross-cutting fault strands that exhibit variations in both strike and dip angles, including a “flower structure” formed by shallow splay faults. Slip inversions are performed using both homogeneous and layered elastic half-space models informed by the local seismic tomography data. The inferred slip distribution suggests a moderate amount of the shallow coseismic slip deficit. The peak moment release occurred in the depth interval of 3–4 km, consistent with results from previous studies of major strike-slip earthquakes, and the depth distribution of seismicity in California. We use the derived slip models to investigate stress transfer and possible triggering relationships between the M 7.1 mainshock and the M 6.4 foreshock, as well as other moderate events that occurred in the vicinity of the M 7.1 hypocenter. Triggering is discouraged for the average strike of the M 7.1 rupture (320°) but encouraged for the initial orientation of the mainshock rupture suggested by the first-motion data (340°). This lends support to a scenario according to which the earthquake rupture nucleated on a small fault that was more optimally oriented with respect to the regional stress and subsequently propagated along the less-favorably oriented pre-existing faults, possibly facilitated by dynamic weakening. The nucleation site of the mainshock experienced positive dynamic Coulomb stress changes that are much larger than the static stress changes, yet the former failed to initiate rupture.more » « less
An official website of the United States government
