skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: First MMS Observation of Energetic Particles Trapped in High‐Latitude Magnetic Field Depressions
Abstract We present a case study of the Magnetospheric Multiscale (MMS) observations of the Southern Hemispheric dayside magnetospheric boundaries under southward interplanetary magnetic field direction with strongBycomponent. During this event MMS encountered several magnetic field depressions characterized by enhanced plasma beta and high fluxes of high‐energy electrons and ions at the dusk sector of the southern cusp region that resemble previous Cluster and Polar observations of cusp diamagnetic cavities. Based on the expected maximum magnetic shear model and magnetohydrodynamic simulations, we show that for the present event the diamagnetic cavity‐like structures were formed in an unusual location. Analysis of the composition measurements of ion velocity distribution functions and magnetohydrodynamics simulations show clear evidence of the creation of a new kind of magnetic bottle structures by component reconnection occurring at lower latitudes. We propose that the high‐energy particles trapped in these cavities can sometimes end up in the loss cone and leak out, providing a likely explanation for recent high‐energy particle leakage events observed in the magnetosheath.  more » « less
Award ID(s):
1707521
PAR ID:
10374474
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Volume:
124
Issue:
1
ISSN:
2169-9380
Page Range / eLocation ID:
p. 197-210
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Electron injections are critical processes associated with magnetospheric substorms, which deposit significant electron energy into the ionosphere. Although wave scattering of <10 keV electrons during injections has been well studied, the link between magnetotail electron injections and energetic (≥100 keV) electron precipitation remains elusive. Using conjugate observations between the Electron Loss and Fields Investigation (ELFIN) and Magnetospheric Multiscale (MMS) missions, we present evidence of tens to hundreds of keV electron precipitation to the ionosphere potentially driven by kinetic Alfvén waves (KAWs) associated with magnetotail electron injections and magnetic field gradients. Test particle simulations adapted to observations show that dipolarization‐front magnetic field gradients and associated ∇Bdrifts allow Doppler‐shifted Landau resonances between the injected electrons and KAWs, producing electron spatial scattering across the front which results in pitch‐angle decreases and subsequent precipitation. Test particle results show that such KAW‐driven precipitation can account for ELFIN observations below ∼300 keV. 
    more » « less
  2. Abstract Solar wind directional discontinuities, such as rotational discontinuities (RDs), significantly influence energy and transport processes in the Earth's magnetosphere. A recent observational study identified a long‐lasting double cusp precipitation event associated with RD in solar wind on 10 April 2015. To understand the magnetosphere‐ionosphere response to the solar wind RD, a global hybrid simulation of the magnetosphere was conducted, with solar wind conditions based on the observation event. The simulation results show significant variations in the magnetopause and cusp regions caused by the passing RD. After the RD propagates to the magnetopause, ion precipitation intensifies, and a double cusp structure at varying latitudes and longitudes forms near noon in the northern hemisphere, which is consistent with the satellite observations by Wing et al. (2023,https://doi.org/10.1029/2023gl103194). Regarding dayside magnetopause reconnection, the simulation reveals that the high‐latitude reconnection process persists during the RD passing, regardless of whether the interplanetary magnetic field (IMF) with a highBy/Bzratio has a positive or negativeBzcomponent, and low‐latitude reconnection occurs after the RD reaches the magnetopause at noon when the IMF turns southward. By examining the ion sources along the magnetic field lines, a connection is found between the single‐ or double‐cusp ion precipitation and the solar wind ions entering from both high‐latitude and low‐latitude reconnection sites. This result suggests that the double‐cusp structure can be triggered by magnetic reconnection occurring at both low latitudes and high latitudes in the opposite hemispheres, associated with a largeBy/Bzratio of the IMF around the RD. 
    more » « less
  3. Abstract We present observations that suggest the X-line of guide-field magnetic reconnection is not necessarily orthogonal to the plane in which magnetic reconnection is occurring. The plane of magnetic reconnection is often referred to as theL–Nplane, whereLis the direction of the reversing and reconnecting magnetic field andNis normal to the current sheet. The X-line is often assumed to be orthogonal to theL–Nplane (defined as theM-direction) in the majority of theoretical studies and numerical simulations. The four-satellite Magnetospheric Multiscale (MMS) mission, however, observes a guide-field magnetic reconnection event in Earth’s magnetotail in which the X-line may be oblique to theL–Nplane. This finding is somewhat opportune as two of the MMS satellites at the sameNlocation report nearly identical observations with no significant time delays in the electron diffusion region (EDR) even though they have substantial separation inL. A minimum directional derivative analysis suggests that the X-line is between 40° and 60° fromM, adding support that the X-line is oblique. Furthermore, the measured ion velocity is inconsistent with the apparent motion of the MMS spacecraft in theL-direction through the EDR, which can be resolved if one assumes a shear in theL–Nplane and motion in theM-direction. A nonorthogonal X-line, if somewhat common, would call for revisiting theory and simulations of guide-field magnetic reconnection, reexamination of how the reconnection electric field is supported in the EDR, and reconsidering the large-scale geometry of the X-line. 
    more » « less
  4. Abstract In Earth’s foreshock, there are many foreshock transients that have core regions with low field strength, low density, high temperature, and bulk velocity variation. Through dynamic pressure perturbations, they can disturb the magnetosphere–ionosphere system. They can also accelerate particles contributing to particle acceleration at the bow shock. Recent Magnetospheric Multiscale (MMS) mission observations showed that inside the low field strength core region, there are usually kinetic‐scale magnetic holes with even lower field strength (<1 nT). However, their nature and effects are unknown. In this study, we used MMS observations to conduct case studies on these magnetic holes. We found that they could be subion‐scale current sheets without a magnetic normal component and guide field, driven by the motion of demagnetized electrons. These magnetic holes can also be subion‐scale flux ropes or magnetic helical structures with weak axial field. The low field strength inside them can be either driven by external expansion or electron mirror mode. Electrons inside them show flux depletion at 90° pitch angle resulting in an “electron hole” distribution. These magnetic holes can play a role in electron dynamics, wave excitation, and shaping the foreshock transient structures. Our detailed study of such features sheds light on the turbulent nature of foreshock transient cores. 
    more » « less
  5. Abstract Reconnection in the magnetotail occurs along so‐called X‐lines, where magnetic field lines tear and detach from plasma on microscopic spatial scales (comparable to particle gyroradii). In 2017–2020, the Magnetospheric MultiScale (MMS) mission detected X‐lines in the magnetotail enabling their investigation on local scales. However, the global structure and evolution of these X‐lines, critical for understanding their formation and total energy conversion mechanisms, remained virtually unknown because of the intrinsically local nature of observations and the extreme sparsity of concurrent data. Here, we show that mining a multi‐mission archive of space magnetometer data collected over the last 26 yr and then fitting a magnetic field representation modeled using flexible basis‐functions faithfully reconstructs the global pattern of X‐lines; 24 of the 26 modeled X‐lines match (Bz = 0 isocontours are within ∼2 Earth radii orRE) or nearly match (Bz = 2 nT isocontours are within ∼2RE) the locations of the MMS encountered reconnection sites. The obtained global reconnection picture is considered in the context of substorm activity, including conventional substorms and more complex events. 
    more » « less