Abstract The eddy covariance (EC) method is one of the most widely used approaches to quantify surface‐atmosphere fluxes. However, scaling up from a single EC tower to the landscape remains an open challenge. To address this, we used 63 site years of data to examine simulated annual and growing season sums of carbon fluxes from three paired land‐cover type sites of corn, restored‐prairie, and switchgrass ecosystems. This was also done across the landscape by modeling fluxes using different land‐cover type input data. An artificial neural network (ANN) approach was used to model net ecosystem exchange (NEE), ecosystem respiration (Reco), and gross primary production (GPP) at one paired site using environmental observations from the second site only. With a mean spatial separation of 11 km between paired sites, we were able to model annual sums of NEE,Reco, and GPP with uncertainties of 20%, 22%, and 8%, respectively, relative to observation sums. When considering the growing season only, model uncertainties were 17%, 22%, and 9%, respectively for the three flux terms. We also show that ANN models can estimate sums ofRecoand GPP fluxes without needing the constraint of similar land‐cover‐type, with annual uncertainties of 12% and 10%. These results provide new insights to scaling up observations from one EC site beyond the footprint of the EC tower to multiple land‐cover types across the landscape.
more »
« less
Partitioning Net Ecosystem Exchange (NEE) of CO 2 Using Solar‐Induced Chlorophyll Fluorescence (SIF)
Abstract Accurate partitioning of net ecosystem exchange (NEE) of CO2to gross primary production (GPP) and ecosystem respiration (Reco) is crucial for understanding carbon cycle dynamics under changing climate. However, it remains as a long‐standing problem in global ecology due to lack of independent constraining information for the two offsetting component fluxes. solar‐induced chlorophyll fluorescence (SIF), a mechanistic proxy for photosynthesis, holds great promise to improve NEE partitioning by constraining GPP. We developed a parsimonious SIF‐based approach for NEE partitioning and examined its performance using synthetic simulations and field measurements. This approach outperforms conventional approaches in reproducing simulated GPP andReco, especially under high vapor pressure deficit. For field measurements, it results in lower daytime GPP andRecothan conventional approaches. This study made the first attempt to demonstrate SIF's potential for improving NEE partitioning accuracy and sets the stage for future efforts to examine its robustness and scalability under real‐world environmental conditions.
more »
« less
- Award ID(s):
- 1926488
- PAR ID:
- 10374505
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 48
- Issue:
- 4
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Arctic‐boreal landscapes are experiencing profound warming, along with changes in ecosystem moisture status and disturbance from fire. This region is of global importance in terms of carbon feedbacks to climate, yet the sign (sink or source) and magnitude of the Arctic‐boreal carbon budget within recent years remains highly uncertain. Here, we provide new estimates of recent (2003–2015) vegetation gross primary productivity (GPP), ecosystem respiration (Reco), net ecosystem CO2exchange (NEE;Reco − GPP), and terrestrial methane (CH4) emissions for the Arctic‐boreal zone using a satellite data‐driven process‐model for northern ecosystems (TCFM‐Arctic), calibrated and evaluated using measurements from >60 tower eddy covariance (EC) sites. We used TCFM‐Arctic to obtain daily 1‐km2flux estimates and annual carbon budgets for the pan‐Arctic‐boreal region. Across the domain, the model indicated an overall average NEE sink of −850 Tg CO2‐C year−1. Eurasian boreal zones, especially those in Siberia, contributed to a majority of the net sink. In contrast, the tundra biome was relatively carbon neutral (ranging from small sink to source). Regional CH4emissions from tundra and boreal wetlands (not accounting for aquatic CH4) were estimated at 35 Tg CH4‐C year−1. Accounting for additional emissions from open water aquatic bodies and from fire, using available estimates from the literature, reduced the total regional NEE sink by 21% and shifted many far northern tundra landscapes, and some boreal forests, to a net carbon source. This assessment, based on in situ observations and models, improves our understanding of the high‐latitude carbon status and also indicates a continued need for integrated site‐to‐regional assessments to monitor the vulnerability of these ecosystems to climate change.more » « less
-
Abstract Solar‐induced chlorophyll fluorescence (SIF) has been increasingly used as a proxy for terrestrial gross primary productivity (GPP). Previous work mainly evaluated the relationship between satellite‐observed SIF and gridded GPP products both based on coarse spatial resolutions. Finer resolution SIF (1.3 km × 2.25 km) measured from the Orbiting Carbon Observatory‐2 (OCO‐2) provides the first opportunity to examine the SIF–GPP relationship at the ecosystem scale using flux tower GPP data. However, it remains unclear how strong the relationship is for each biome and whether a robust, universal relationship exists across a variety of biomes. Here we conducted the first global analysis of the relationship between OCO‐2 SIF and tower GPP for a total of 64 flux sites across the globe encompassing eight major biomes. OCO‐2 SIF showed strong correlations with tower GPP at both midday and daily timescales, with the strongest relationship observed for daily SIF at the 757 nm (R2 = 0.72,p < 0.0001). Strong linear relationships between SIF and GPP were consistently found for all biomes (R2 = 0.57–0.79,p < 0.0001) except evergreen broadleaf forests (R2 = 0.16,p < 0.05) at the daily timescale. A higher slope was found for C4grasslands and croplands than for C3ecosystems. The generally consistent slope of the relationship among biomes suggests a nearly universal rather than biome‐specific SIF–GPP relationship, and this finding is an important distinction and simplification compared to previous results. SIF was mainly driven by absorbed photosynthetically active radiation and was also influenced by environmental stresses (temperature and water stresses) that determine photosynthetic light use efficiency. OCO‐2 SIF generally had a better performance for predicting GPP than satellite‐derived vegetation indices and a light use efficiency model. The universal SIF–GPP relationship can potentially lead to more accurate GPP estimates regionally or globally. Our findings revealed the remarkable ability of finer resolution SIF observations from OCO‐2 and other new or future missions (e.g., TROPOMI, FLEX) for estimating terrestrial photosynthesis across a wide variety of biomes and identified their potential and limitations for ecosystem functioning and carbon cycle studies.more » « less
-
Abstract Tidal wetlands provide valuable ecosystem services, including storing large amounts of carbon. However, the net exchanges of carbon dioxide (CO2) and methane (CH4) in tidal wetlands are highly uncertain. While several biogeochemical models can operate in tidal wetlands, they have yet to be parameterized and validated against high‐frequency, ecosystem‐scale CO2and CH4flux measurements across diverse sites. We paired the Cohort Marsh Equilibrium Model (CMEM) with a version of the PEPRMT model called PEPRMT‐Tidal, which considers the effects of water table height, sulfate, and nitrate availability on CO2and CH4emissions. Using a model‐data fusion approach, we parameterized the model with three sites and validated it with two independent sites, with representation from the three marine coasts of North America. Gross primary productivity (GPP) and ecosystem respiration (Reco) modules explained, on average, 73% of the variation in CO2exchange with low model error (normalized root mean square error (nRMSE) <1). The CH4module also explained the majority of variance in CH4emissions in validation sites (R2 = 0.54; nRMSE = 1.15). The PEPRMT‐Tidal‐CMEM model coupling is a key advance toward constraining estimates of greenhouse gas emissions across diverse North American tidal wetlands. Further analyses of model error and case studies during changing salinity conditions guide future modeling efforts regarding four main processes: (a) the influence of salinity and nitrate on GPP, (b) the influence of laterally transported dissolved inorganic C on Reco, (c) heterogeneous sulfate availability and methylotrophic methanogenesis impacts on surface CH4emissions, and (d) CH4responses to non‐periodic changes in salinity.more » « less
-
Abstract Permafrost thaw causes the seasonally thawed active layer to deepen, causing the Arctic to shift toward carbon release as soil organic matter becomes susceptible to decomposition. Ground subsidence initiated by ice loss can cause these soils to collapse abruptly, rapidly shifting soil moisture as microtopography changes and also accelerating carbon and nutrient mobilization. The uncertainty of soil moisture trajectories during thaw makes it difficult to predict the role of abrupt thaw in suppressing or exacerbating carbon losses. In this study, we investigated the role of shifting soil moisture conditions on carbon dioxide fluxes during a 13‐year permafrost warming experiment that exhibited abrupt thaw. Warming deepened the active layer differentially across treatments, leading to variable rates of subsidence and formation of thermokarst depressions. In turn, differential subsidence caused a gradient of moisture conditions, with some plots becoming consistently inundated with water within thermokarst depressions and others exhibiting generally dry, but more variable soil moisture conditions outside of thermokarst depressions. Experimentally induced permafrost thaw initially drove increasing rates of growing season gross primary productivity (GPP), ecosystem respiration (Reco), and net ecosystem exchange (NEE) (higher carbon uptake), but the formation of thermokarst depressions began to reverse this trend with a high level of spatial heterogeneity. Plots that subsided at the slowest rate stayed relatively dry and supported higher CO2fluxes throughout the 13‐year experiment, while plots that subsided very rapidly into the center of a thermokarst feature became consistently wet and experienced a rapid decline in growing season GPP,Reco, and NEE (lower carbon uptake or carbon release). These findings indicate that Earth system models, which do not simulate subsidence and often predict drier active layer conditions, likely overestimate net growing season carbon uptake in abruptly thawing landscapes.more » « less