Abstract. Landscapes are often assumed to be homogeneous when interpreting eddy covariance fluxes, which can lead to biases when gap-filling and scaling up observations to determine regional carbon budgets. Tundra ecosystems are heterogeneous at multiple scales. Plant functional types, soil moisture, thaw depth, and microtopography, for example, vary across the landscape and influence net ecosystem exchange (NEE) of carbon dioxide (CO2) and methane (CH4) fluxes. With warming temperatures, Arctic ecosystems are changing from a net sink to a net source of carbon to the atmosphere in some locations, but the Arctic's carbon balance remains highly uncertain. In this study we report results from growing season NEE and CH4 fluxes from an eddy covariance tower in the Yukon–Kuskokwim Delta in Alaska. We used footprint models and Bayesian Markov chain Monte Carlo (MCMC) methods to unmix eddy covariance observations into constituent land-cover fluxes based on high-resolution land-cover maps of the region. We compared three types of footprint models and used two land-cover maps with varying complexity to determine the effects of these choices on derived ecosystem fluxes. We used artificially created gaps of withheld observations to compare gap-filling performance using our derived land-cover-specific fluxes and traditional gap-filling methods that assume homogeneous landscapes. We also compared resulting regional carbon budgets when scaling up observations using heterogeneous and homogeneous approaches. Traditional gap-filling methods performed worse at predicting artificially withheld gaps in NEE than those that accounted for heterogeneous landscapes, while there were only slight differences between footprint models and land-cover maps. We identified and quantified hot spots of carbon fluxes in the landscape (e.g., late growing season emissions from wetlands and small ponds). We resolved distinct seasonality in tundra growing season NEE fluxes. Scaling while assuming a homogeneous landscape overestimated the growing season CO2 sink by a factor of 2 and underestimated CH4 emissions by a factor of 2 when compared to scaling with any method that accounts for landscape heterogeneity. We show how Bayesian MCMC, analytical footprint models, and high-resolution land-cover maps can be leveraged to derive detailed land-cover carbon fluxes from eddy covariance time series. These results demonstrate the importance of landscape heterogeneity when scaling carbon emissions across the Arctic.
more »
« less
Modeled Surface‐Atmosphere Fluxes From Paired Sites in the Upper Great Lakes Region Using Neural Networks
Abstract The eddy covariance (EC) method is one of the most widely used approaches to quantify surface‐atmosphere fluxes. However, scaling up from a single EC tower to the landscape remains an open challenge. To address this, we used 63 site years of data to examine simulated annual and growing season sums of carbon fluxes from three paired land‐cover type sites of corn, restored‐prairie, and switchgrass ecosystems. This was also done across the landscape by modeling fluxes using different land‐cover type input data. An artificial neural network (ANN) approach was used to model net ecosystem exchange (NEE), ecosystem respiration (Reco), and gross primary production (GPP) at one paired site using environmental observations from the second site only. With a mean spatial separation of 11 km between paired sites, we were able to model annual sums of NEE,Reco, and GPP with uncertainties of 20%, 22%, and 8%, respectively, relative to observation sums. When considering the growing season only, model uncertainties were 17%, 22%, and 9%, respectively for the three flux terms. We also show that ANN models can estimate sums ofRecoand GPP fluxes without needing the constraint of similar land‐cover‐type, with annual uncertainties of 12% and 10%. These results provide new insights to scaling up observations from one EC site beyond the footprint of the EC tower to multiple land‐cover types across the landscape.
more »
« less
- Award ID(s):
- 1832042
- PAR ID:
- 10375566
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Biogeosciences
- Volume:
- 126
- Issue:
- 8
- ISSN:
- 2169-8953
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Peatlands store substantial amounts of carbon and are vulnerable to climate change. We present a modified version of the Organising Carbon and Hydrology In Dynamic Ecosystems (ORCHIDEE) land surface model for simulating the hydrology, surface energy, and CO2 fluxes of peatlands on daily to annual timescales. The model includes a separate soil tile in each 0.5° grid cell, defined from a global peatland map and identified with peat-specific soil hydraulic properties. Runoff from non-peat vegetation within a grid cell containing a fraction of peat is routed to this peat soil tile, which maintains shallow water tables. The water table position separates oxic from anoxic decomposition. The model was evaluated against eddy-covariance (EC) observations from 30 northern peatland sites, with the maximum rate of carboxylation (Vcmax) being optimized at each site. Regarding short-term day-to-day variations, the model performance was good for gross primary production (GPP) (r2 = 0.76; Nash–Sutcliffe modeling efficiency, MEF = 0.76) and ecosystem respiration (ER, r2 = 0.78, MEF = 0.75), with lesser accuracy for latent heat fluxes (LE, r2 = 0.42, MEF = 0.14) and and net ecosystem CO2 exchange (NEE, r2 = 0.38, MEF = 0.26). Seasonal variations in GPP, ER, NEE, and energy fluxes on monthly scales showed moderate to high r2 values (0.57–0.86). For spatial across-site gradients of annual mean GPP, ER, NEE, and LE, r2 values of 0.93, 0.89, 0.27, and 0.71 were achieved, respectively. Water table (WT) variation was not well predicted (r2 < 0.1), likely due to the uncertain water input to the peat from surrounding areas. However, the poor performance of WT simulation did not greatly affect predictions of ER and NEE. We found a significant relationship between optimized Vcmax and latitude (temperature), which better reflects the spatial gradients of annual NEE than using an average Vcmax value.more » « less
-
Partitioning Net Ecosystem Exchange (NEE) of CO 2 Using Solar‐Induced Chlorophyll Fluorescence (SIF)Abstract Accurate partitioning of net ecosystem exchange (NEE) of CO2to gross primary production (GPP) and ecosystem respiration (Reco) is crucial for understanding carbon cycle dynamics under changing climate. However, it remains as a long‐standing problem in global ecology due to lack of independent constraining information for the two offsetting component fluxes. solar‐induced chlorophyll fluorescence (SIF), a mechanistic proxy for photosynthesis, holds great promise to improve NEE partitioning by constraining GPP. We developed a parsimonious SIF‐based approach for NEE partitioning and examined its performance using synthetic simulations and field measurements. This approach outperforms conventional approaches in reproducing simulated GPP andReco, especially under high vapor pressure deficit. For field measurements, it results in lower daytime GPP andRecothan conventional approaches. This study made the first attempt to demonstrate SIF's potential for improving NEE partitioning accuracy and sets the stage for future efforts to examine its robustness and scalability under real‐world environmental conditions.more » « less
-
Abstract Arctic‐boreal landscapes are experiencing profound warming, along with changes in ecosystem moisture status and disturbance from fire. This region is of global importance in terms of carbon feedbacks to climate, yet the sign (sink or source) and magnitude of the Arctic‐boreal carbon budget within recent years remains highly uncertain. Here, we provide new estimates of recent (2003–2015) vegetation gross primary productivity (GPP), ecosystem respiration (Reco), net ecosystem CO2exchange (NEE;Reco − GPP), and terrestrial methane (CH4) emissions for the Arctic‐boreal zone using a satellite data‐driven process‐model for northern ecosystems (TCFM‐Arctic), calibrated and evaluated using measurements from >60 tower eddy covariance (EC) sites. We used TCFM‐Arctic to obtain daily 1‐km2flux estimates and annual carbon budgets for the pan‐Arctic‐boreal region. Across the domain, the model indicated an overall average NEE sink of −850 Tg CO2‐C year−1. Eurasian boreal zones, especially those in Siberia, contributed to a majority of the net sink. In contrast, the tundra biome was relatively carbon neutral (ranging from small sink to source). Regional CH4emissions from tundra and boreal wetlands (not accounting for aquatic CH4) were estimated at 35 Tg CH4‐C year−1. Accounting for additional emissions from open water aquatic bodies and from fire, using available estimates from the literature, reduced the total regional NEE sink by 21% and shifted many far northern tundra landscapes, and some boreal forests, to a net carbon source. This assessment, based on in situ observations and models, improves our understanding of the high‐latitude carbon status and also indicates a continued need for integrated site‐to‐regional assessments to monitor the vulnerability of these ecosystems to climate change.more » « less
-
Abstract Rangelands provide significant environmental benefits through many ecosystem services, which may include soil organic carbon (SOC) sequestration. However, quantifying SOC stocks and monitoring carbon (C) fluxes in rangelands are challenging due to the considerable spatial and temporal variability tied to rangeland C dynamics as well as limited data availability. We developed the Rangeland Carbon Tracking and Management (RCTM) system to track long‐term changes in SOC and ecosystem C fluxes by leveraging remote sensing inputs and environmental variable data sets with algorithms representing terrestrial C‐cycle processes. Bayesian calibration was conducted using quality‐controlled C flux data sets obtained from 61 Ameriflux and NEON flux tower sites from Western and Midwestern US rangelands to parameterize the model according to dominant vegetation classes (perennial and/or annual grass, grass‐shrub mixture, and grass‐tree mixture). The resulting RCTM system produced higher model accuracy for estimating annual cumulative gross primary productivity (GPP) (R2 > 0.6, RMSE <390 g C m−2) relative to net ecosystem exchange of CO2(NEE) (R2 > 0.4, RMSE <180 g C m−2). Model performance in estimating rangeland C fluxes varied by season and vegetation type. The RCTM captured the spatial variability of SOC stocks withR2 = 0.6 when validated against SOC measurements across 13 NEON sites. Model simulations indicated slightly enhanced SOC stocks for the flux tower sites during the past decade, which is mainly driven by an increase in precipitation. Future efforts to refine the RCTM system will benefit from long‐term network‐based monitoring of vegetation biomass, C fluxes, and SOC stocks.more » « less
An official website of the United States government
