skip to main content


Title: The dynamic and thermodynamic structure of the monsoon over southern India: New observations from the INCOMPASS IOP

Some of the highest summer monsoon rainfall in South Asia falls on the windward slopes of the Western Ghats mountains on India's west coast and offshore over the eastern Arabian Sea. Understanding of the processes determining the spatial distribution and temporal variability of this region remains incomplete. In this paper, new Interaction of Convective Organization and Monsoon Precipitation, Atmosphere, Surface and Sea (INCOMPASS) aircraft and ground‐based measurements of the summer monsoon over the Western Ghats and upstream of them are presented and placed within the context of remote‐sensing observations and reanalysis. The transition from widespread rainfall over the eastern Arabian Sea to rainfall over the Western Ghats is documented in high spatial and temporal resolution. Heavy rainfall offshore during the campaign was associated primarily with mid‐tropospheric humidity, secondarily with sea surface temperature, and only weakly with orographic blocking. A mid‐tropospheric dry intrusion suppressed deep convection offshore in the latter half of the campaign, allowing the build‐up of low‐level humidity in the onshore flow and enhancing rainfall over the mountains. Rainfall on the lee side of the Western Ghats occurred during the latter half of the campaign in association with enhanced mesoscale easterly upslope flow. Diurnal cycles in rainfall offshore (maximum in the morning) and on the mountains (maximum in the afternoon) were observed. Considerable zonal and temporal variability was seen in the offshore boundary layer, suggesting the presence of convective downdraughts and cold pools. Persistent drying of the subcloud mixed layer several hundred kilometres off the coast was observed, suggesting strong mixing between the boundary layer and the free troposphere. These observations provide quantitative targets to test models and suggest hypotheses on the physical mechanisms determining the distribution and variability in rainfall in the Western Ghats region.

 
more » « less
NSF-PAR ID:
10374544
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Quarterly Journal of the Royal Meteorological Society
Volume:
146
Issue:
731
ISSN:
0035-9009
Page Range / eLocation ID:
p. 2867-2890
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Simulations of the Indian summer monsoon by the cloud-permitting Weather Research and Forecasting (WRF) model at gray-zone resolution are described in this study, with a particular emphasis on the model ability to capture the monsoon intraseasonal oscillations (MISOs). Five boreal summers are simulated from 2007 to 2011 using the ERA-Interim reanalysis as the lateral boundary forcing data. Our experimental setup relies on a horizontal grid spacing of 9km to explicitly simulate deep convection without the use of cumulus parameterizations. When compared to simulations with coarser grid spacing (27km) and using a cumulus scheme, the 9km simulations reduce the biases in mean precipitation and produce more realistic low-frequency variability associated with MISOs. Results show that the model at the 9km gray-zone resolution captures the salient features of the summer monsoon. The spatial distributions and temporal evolutions of monsoon rainfall in the WRF simulations verify qualitatively well against observations from the Tropical Rainfall Measurement Mission (TRMM), with regional maxima located over Western Ghats, central India, Himalaya foothills, and the west coast of Myanmar. The onset, breaks, and withdrawal of the summer monsoon in each year are also realistically captured by the model. The MISO-phase composites of monsoon rainfall, low-level wind, and precipitable water anomalies in the simulations also agree qualitatively with the observations. Both the simulations and observations show a northeastward propagation of the MISOs, with the intensification and weakening of the Somali Jet over the Arabian Sea during the active and break phases of the Indian summer monsoon.

     
    more » « less
  2. Abstract. The Indian Ocean presents two distinct climate regimes. The north Indian Ocean is dominated by the monsoons, whereas the seasonal reversal is less pronounced in the south. The prevailing wind pattern produces upwelling along different parts of the coast in both hemispheres during different times of the year. Additionally, dynamical processes and eddies either cause or enhance upwelling. This paper reviews the phenomena of upwelling along the coast of the Indian Ocean extending from the tip of South Africa to the southern tip of the west coast of Australia. Observed features, underlying mechanisms, and the impact of upwelling on the ecosystem are presented. In the Agulhas Current region, cyclonic eddies associated with Natal pulses drive slope upwelling and enhance chlorophyll concentrations along the continental margin. The Durban break-away eddy spun up by the Agulhas upwells cold nutrient-rich water. Additionally, topographically induced upwelling occurs along the inshore edges of the Agulhas Current. Wind-driven coastal upwelling occurs along the south coast of Africa and augments the dynamical upwelling in the Agulhas Current. Upwelling hotspots along the Mozambique coast are present in the northern and southern sectors of the channel and are ascribed to dynamical effects of ocean circulation in addition to wind forcing. Interaction of mesoscale eddies with the western boundary, dipole eddy pair interactions, and passage of cyclonic eddies cause upwelling. Upwelling along the southern coast of Madagascar is caused by the Ekman wind-driven mechanism and by eddy generation and is inhibited by the Southwest Madagascar Coastal Current. Seasonal upwelling along the East African coast is primarily driven by the northeast monsoon winds and enhanced by topographically induced shelf breaking and shear instability between the East African Coastal Current and the island chains. The Somali coast presents a strong case for the classical Ekman type of upwelling; such upwelling can be inhibited by the arrival of deeper thermocline signals generated in the offshore region by wind stress curl. Upwelling is nearly uniform along the coast of Arabia, caused by the alongshore component of the summer monsoon winds and modulated by the arrival of Rossby waves generated in the offshore region by cyclonic wind stress curl. Along the west coast of India, upwelling is driven by coastally trapped waves together with the alongshore component of the monsoon winds. Along the southern tip of India and Sri Lanka, the strong Ekman transport drives upwelling. Upwelling along the east coast of India is weak and occurs during summer, caused by alongshore winds. In addition, mesoscale eddies lead to upwelling, but the arrival of river water plumes inhibits upwelling along this coast. Southeasterly winds drive upwelling along the coast of Sumatra and Java during summer, with Kelvin wave propagation originating from the equatorial Indian Ocean affecting the magnitude and extent of the upwelling. Both El Niño–Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) events cause large variability in upwelling here. Along the west coast of Australia, which is characterized by the anomalous Leeuwin Current, southerly winds can cause sporadic upwelling, which is prominent along the southwest, central, and Gascoyne coasts during summer. Open-ocean upwelling in the southern tropical Indian Ocean and within the Sri Lanka Dome is driven primarily by the wind stress curl but is also impacted by Rossby wave propagations. Upwelling is a key driver enhancing biological productivity in all sectors of the coast, as indicated by enhanced sea surface chlorophyll concentrations. Additional knowledge at varying levels has been gained through in situ observations and model simulations. In the Mozambique Channel, upwelling simulates new production and circulation redistributes the production generated by upwelling and mesoscale eddies, leading to observations of higher ecosystem impacts along the edges of eddies. Similarly, along the southern Madagascar coast, biological connectivity is influenced by the transport of phytoplankton from upwelling zones. Along the coast of Kenya, both productivity rates and zooplankton biomass are higher during the upwelling season. Along the Somali coast, accumulation of upwelled nutrients in the northern part of the coast leads to spatial heterogeneity in productivity. In contrast, productivity is more uniform along the coasts of Yemen and Oman. Upwelling along the west coast of India has several biogeochemical implications, including oxygen depletion, denitrification, and high production of CH4 and dimethyl sulfide. Although weak, wind-driven upwelling leads to significant enhancement of phytoplankton in the northwest Bay of Bengal during the summer monsoon. Along the Sumatra and Java coasts, upwelling affects the phytoplankton composition and assemblages. Dissimilarities in copepod assemblages occur during the upwelling periods along the west coast of Australia. Phytoplankton abundance characterizes inshore edges of the slope during upwelling season, and upwelling eddies are associated with krill abundance. The review identifies the northern coast of the Arabian Sea and eastern coasts of the Bay of Bengal as the least observed sectors. Additionally, sustained long-term observations with high temporal and spatial resolutions along with high-resolution modelling efforts are recommended for a deeper understanding of upwelling, its variability, and its impact on the ecosystem. 
    more » « less
  3. null (Ed.)
    Interactions between the solid Earth and climate system represent a frontier area for geoscientific research that is strongly emphasized in the International Ocean Discovery Program (IODP) Science Plan. The continental margin of India adjoining the Arabian Sea offers a unique opportunity to understand tectonic-climatic interactions and the net impact of these on weathering and erosion of the Himalaya. Scientific drilling in the Arabian Sea is designed to understand the coevolution of mountain building, weathering, erosion, and climate over a range of timescales. The southwest monsoon is one of the most intense climatic phenomena on Earth. Its long-term development has been linked to the growth of high topography in South and Central Asia. Conversely, the tectonic evolution of the Himalaya, especially the exhumation of the Greater Himalaya, has been linked to intensification of the summer monsoon rains, as well as to plate tectonic forces. Weathering of the Himalaya has also been linked to long-term drawdown of atmospheric CO2 during the Cenozoic, culminating in the onset of Northern Hemisphere glaciation. No other part of the world has such intense links between tectonic and climatic processes. Unfortunately, these hypotheses remain largely untested because of limited information on the history of erosion and weathering recorded in the resultant sedimentary prisms. This type of data cannot be found on shore because the proximal foreland basin records are disrupted by major unconformities, and depositional ages are difficult to determine with high precision. We therefore propose to recover longer records of erosion and weathering from the Indus Fan that will allow us to understand links between paleoceanographic processes and the climatic history of the region. The latter was partially addressed by Ocean Drilling Program (ODP) Leg 117 on the Oman margin, and further studies are proposed during IODP Expedition 353 (Indian Monsoon Rainfall) that will core several sites in the Bay of Bengal. Such records can be correlated to structural geological and thermochronology data in the Himalaya and Tibetan Plateau to estimate how sediment fluxes and exhumation rates change through time. The drilling will be accomplished within a regional seismic stratigraphic framework and will for the first time permit an estimation of sediment budgets together with quantitative estimates of weathering fluxes and their variation through time. Specific goals of this expedition include 1. Testing whether the timing of the exhumation of Greater Himalaya correlates with an enhanced erosional flux and stronger chemical weathering after ~23 Ma, 2. Determining the amplitude and direction of the environmental change at 8 Ma, and 3. Dating the age of the base of the fan and the underlying basement to constrain the timing of India-Asia collision. Drilling through the fan base and into the underlying basement in the proposed area will permit additional constraints to be placed on the nature of the crust in the Laxmi Basin (Eastern Arabian Sea), which has a significant bearing on paleogeographic reconstructions along conjugate margins in the Arabian Sea and models of continental breakup on rifted volcanic margins. 
    more » « less
  4. Abstract

    The impact of quasi-biweekly variability in the monsoon southwesterly winds on the precipitation diurnal cycle in the Philippines is examined using CMORPH precipitation, ERA5 data, and outgoing longwave radiation (OLR) fields. Both a case study during the 2018 Propagation of Intraseasonal Tropical Oscillations (PISTON) field campaign and a 23-yr composite analysis are used to understand the effect of the quasi-biweekly oscillation (QBWO) on the diurnal cycle. QBWO events in the west Pacific, identified with an extended EOF index, bring increases in moisture, cloudiness, and westerly winds to the Philippines. Such events are associated with significant variability in daily mean precipitation and the diurnal cycle. It is shown that the modulation of the diurnal cycle by the QBWO is remarkably similar to that by the boreal summer intraseasonal oscillation (BSISO). The diurnal cycle reaches maximum amplitude on the western side of the Philippines on days with average to above-average moisture, sufficient insolation, and weakly offshore prevailing wind. This occurs during the transition period from suppressed to active large-scale convection for both the QBWO and BSISO. Westerly monsoon surges associated with QBWO variability generally exhibit active precipitation over the South China Sea (SCS), but a depressed diurnal cycle. These results highlight that modes of large-scale convective variability in the tropics can have a similar impact on the diurnal cycle if they influence the local-scale environmental background state similarly.

     
    more » « less
  5. Abstract

    According to Tropical Rainfall Measuring Mission (TRMM) and Global Precipitation Measurement (GPM) satellite precipitation composites, a broad maritime area over the far eastern tropical Pacific and western Colombia houses one of the rainiest spots on Earth. This study aims to present a suite of mechanistic drivers that help create such a world‐record‐breaking rainy spot. Previous research has shown that this oceanic and nearly continental precipitation maximum has a strong early morning precipitation peak and a high density of mesoscale convective systems. We examined new and unique observational evidence highlighting the role of both dynamical and thermodynamical drivers in the activation and duration of organized convection. Results showed the existence of a rather large combination of mechanisms, including: (1) dynamics of the Choco (ChocoJet) and Caribbean Low‐Level Jets along their confluence zone, including the Panama semi‐permanent low; (2) ChocoJet deceleration offshore is favored by land breeze, enhancing the nighttime and early morning low‐level convergence; (3) a wind sheared environment that conforms to the long‐lived squall line theory; (4) action of mid‐level gravity waves, which further support the strong diurnal variability; and (5) mesoscale convective vortices related to subsidence in the stratiform region and top‐heavy mass flux profiles. This study emphasizes the multiscale circulation and thermodynamics mechanisms associated with the formation of one of the rainiest spots on Earth and showcases new observations gathered during the Organization of Tropical East Pacific Convection field campaign (OTREC; August–September, 2019) that support the outlined mechanisms.

     
    more » « less