Abstract Recent in situ observations show that haze particles exist in a convection cloud chamber. The microphysics schemes previously used for large‐eddy simulations of the cloud chamber could not fully resolve haze particles and the associated processes, including their activation and deactivation. Specifically, cloud droplet activation was modeled based on Twomey‐type parameterizations, wherein cloud droplets were formed when a critical supersaturation for the available cloud condensation nuclei (CCN) was exceeded and haze particles were not explicitly resolved. Here, we develop and adapt haze‐capable bin and Lagrangian microphysics schemes to properly resolve the activation and deactivation processes. Results are compared with the Twomey‐type CCN‐based bin microphysics scheme in which haze particles are not fully resolved. We find that results from the haze‐capable bin microphysics scheme agree well with those from the Lagrangian microphysics scheme. However, both schemes significantly differ from those from a CCN‐based bin microphysics scheme unless CCN recycling is considered. Haze particles from the recycling of deactivated cloud droplets can strongly enhance cloud droplet number concentration due to a positive feedback in haze‐cloud interactions in the cloud chamber. Haze particle size distributions are more realistic when considering solute and curvature effects that enable representing the complete physics of the activation process. Our study suggests that haze particles and their interactions with cloud droplets may have a strong impact on cloud properties when supersaturation fluctuations are comparable to mean supersaturation, as is the case in the cloud chamber and likely is the case in the atmosphere, especially in polluted conditions.
more »
« less
Confronting the Challenge of Modeling Cloud and Precipitation Microphysics
Abstract In the atmosphere,microphysicsrefers to the microscale processes that affect cloud and precipitation particles and is a key linkage among the various components of Earth's atmospheric water and energy cycles. The representation of microphysical processes in models continues to pose a major challenge leading to uncertainty in numerical weather forecasts and climate simulations. In this paper, the problem of treating microphysics in models is divided into two parts: (i) how to represent the population of cloud and precipitation particles, given the impossibility of simulating all particles individually within a cloud, and (ii) uncertainties in the microphysical process rates owing to fundamental gaps in knowledge of cloud physics. The recently developed Lagrangian particle‐based method is advocated as a way to address several conceptual and practical challenges of representing particle populations using traditional bulk and bin microphysics parameterization schemes. For addressing critical gaps in cloud physics knowledge, sustained investment for observational advances from laboratory experiments, new probe development, and next‐generation instruments in space is needed. Greater emphasis on laboratory work, which has apparently declined over the past several decades relative to other areas of cloud physics research, is argued to be an essential ingredient for improving process‐level understanding. More systematic use of natural cloud and precipitation observations to constrain microphysics schemes is also advocated. Because it is generally difficult to quantify individual microphysical process rates from these observations directly, this presents an inverse problem that can be viewed from the standpoint of Bayesian statistics. Following this idea, a probabilistic framework is proposed that combines elements from statistical and physical modeling. Besides providing rigorous constraint of schemes, there is an added benefit of quantifying uncertainty systematically. Finally, a broader hierarchical approach is proposed to accelerate improvements in microphysics schemes, leveraging the advances described in this paper related to process modeling (using Lagrangian particle‐based schemes), laboratory experimentation, cloud and precipitation observations, and statistical methods.
more »
« less
- Award ID(s):
- 1824243
- PAR ID:
- 10374566
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Advances in Modeling Earth Systems
- Volume:
- 12
- Issue:
- 8
- ISSN:
- 1942-2466
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Variability of ice microphysical properties like crystal size and density in cirrus clouds is important for climate through its impact on radiative forcing, but challenging to represent in models. For the first time, recent laboratory experiments of particle growth (tied to crystal morphology via deposition density) are combined with a state‐of‐the‐art Lagrangian particle‐based microphysics model in large‐eddy simulations to examine sources of microphysical variability in cirrus. Simulated particle size distributions compare well against balloon‐borne observations. Overall, microphysical variability is dominated by variability in the particles' thermodynamic histories. However, diversity in crystal morphology notably increases spatial variability of mean particle size and density, especially at mid‐levels in the cloud. Little correlation between instantaneous crystal properties and supersaturation occurs even though the modeled particle morphology is directly tied to supersaturation based on laboratory measurements. Thus, the individual thermodynamic paths of each particle, not the instantaneous conditions, control the evolution of particle properties.more » « less
-
Abstract Cloud microphysics is a critical aspect of the Earth's climate system, which involves processes at the nano‐ and micrometer scales of droplets and ice particles. In climate modeling, cloud microphysics is commonly represented by bulk models, which contain simplified process rates that require calibration. This study presents a framework for calibrating warm‐rain bulk schemes using high‐fidelity super‐droplet simulations that provide a more accurate and physically based representation of cloud and precipitation processes. The calibration framework employs ensemble Kalman methods including Ensemble Kalman Inversion and Unscented Kalman Inversion to calibrate bulk microphysics schemes with probabilistic super‐droplet simulations. We demonstrate the framework's effectiveness by calibrating a single‐moment bulk scheme, resulting in a reduction of data‐model mismatch by more than 75% compared to the model with initial parameters. Thus, this study demonstrates a powerful tool for enhancing the accuracy of bulk microphysics schemes in atmospheric models and improving climate modeling.more » « less
-
Key Points Significant sensitivity of mid‐latitude deep convective storm and the associated anvil cirrus cloud to choice of model microphysics schemes Hydrometeor size‐dependent microphysical process are linked with large variability in storm dynamics Six bulk microphysics schemes produced an order of magnitude spread in above‐tropopause water vapor concentrationsmore » « less
-
null (Ed.)Abstract. Ground-based observatories use multisensor observations to characterize cloud and precipitation properties. One of the challenges is how to designstrategies to best use these observations to understand these properties and evaluate weather and climate models. This paper introduces the Cloud-resolving model Radar SIMulator (CR-SIM), which uses output from high-resolution cloud-resolving models (CRMs) to emulate multiwavelength,zenith-pointing, and scanning radar observables and multisensor (radar and lidar) products. CR-SIM allows for direct comparison between an atmosphericmodel simulation and remote-sensing products using a forward-modeling framework consistent with the microphysical assumptions used in the atmosphericmodel. CR-SIM has the flexibility to easily incorporate additional microphysical modules, such as microphysical schemes and scattering calculations,and expand the applications to simulate multisensor retrieval products. In this paper, we present several applications of CR-SIM for evaluating therepresentativeness of cloud microphysics and dynamics in a CRM, quantifying uncertainties in radar–lidar integrated cloud products and multi-Dopplerwind retrievals, and optimizing radar sampling strategy using observing system simulation experiments. These applications demonstrate CR-SIM as a virtual observatory operator on high-resolution model output for a consistent comparison between model results and observations to aidinterpretation of the differences and improve understanding of the representativeness errors due to the sampling limitations of the ground-basedmeasurements. CR-SIM is licensed under the GNU GPL package and both the software and the user guide are publicly available to the scientificcommunity.more » « less
An official website of the United States government
