skip to main content


Title: Total Synthesis of (+)‐Cochlearol B by an Approach Based on a Catellani Reaction and Visible‐Light‐Enabled [2+2] Cycloaddition**
Abstract

A 14‐step synthesis of (+)‐cochlearol B is reported. This renoprotective meroterpenoid features a unique core structure containing a densely substituted cyclobutane ring with three stereocenters. Our strategy employed an organocatalytic Kabbe condensation in route to the key chromenyl triflate. A subsequent Catellani reaction incorporated the remaining carbon atoms featured in the skeleton of cochlearol B. An ensuing visible‐light‐mediated [2+2] photocycloaddition closed the cyclobutane and formed the central bicyclo[3.2.0]heptane core. Notably, careful design and tuning of the Catellani and photocycloaddition reactions proved crucial in overcoming undesired reactivity, including cyclopropanation reactions and [4+2] cycloadditions.

 
more » « less
NSF-PAR ID:
10374638
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie
Volume:
134
Issue:
31
ISSN:
0044-8249
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    A 14‐step synthesis of (+)‐cochlearol B is reported. This renoprotective meroterpenoid features a unique core structure containing a densely substituted cyclobutane ring with three stereocenters. Our strategy employed an organocatalytic Kabbe condensation in route to the key chromenyl triflate. A subsequent Catellani reaction incorporated the remaining carbon atoms featured in the skeleton of cochlearol B. An ensuing visible‐light‐mediated [2+2] photocycloaddition closed the cyclobutane and formed the central bicyclo[3.2.0]heptane core. Notably, careful design and tuning of the Catellani and photocycloaddition reactions proved crucial in overcoming undesired reactivity, including cyclopropanation reactions and [4+2] cycloadditions.

     
    more » « less
  2. Abstract

    Control over the stereochemistry of excited-state photoreactions remains a significant challenge in organic synthesis. Recently, it has become recognized that the photophysical properties of simple organic substrates can be altered upon coordination to Lewis acid catalysts, and that these changes can be exploited in the design of highly enantioselective catalytic photoreactions. Chromophore activation strategies, wherein simple organic substrates are activated towards photoexcitation upon binding to a Lewis acid catalyst, rank among the most successful asymmetric photoreactions. Herein, we show that chiral Brønsted acids can also catalyze asymmetric excited-state photoreactions by chromophore activation. This principle is demonstrated in the context of a highly enantio- and diastereoselective [2+2] photocycloaddition catalyzed by a chiral phosphoramide organocatalyst. Notably, the cyclobutane products arising from this method feature atrans-cisstereochemistry that is complementary to other enantioselective catalytic [2+2] photocycloadditions reported to date.

     
    more » « less
  3. Abstract

    B←N coordination supports a [2+2] photodimerization in the solid state. The bond is defined by an orthogonal interaction between stilbazole and a phenylboronic ester to enable a stereocontrolled and rapid photoreaction. The cyclobutane photoproduct affords a novel diboron bis‐tweezer adduct that is used to separate a mixture of benzene and thiophene upon crystallization.

     
    more » « less
  4. Abstract

    B←N coordination supports a [2+2] photodimerization in the solid state. The bond is defined by an orthogonal interaction between stilbazole and a phenylboronic ester to enable a stereocontrolled and rapid photoreaction. The cyclobutane photoproduct affords a novel diboron bis‐tweezer adduct that is used to separate a mixture of benzene and thiophene upon crystallization.

     
    more » « less
  5. Abstract

    The [2+2] photocycloaddition (PCA [2+2]) of alkenes is one of the most synthetically useful photoreactions. It is a convenient one‐step reaction that is useful for generating substituted cyclobutanes, polymers, and biologically relevant molecules. However, the reaction efficiency is limited by its bimolecular nature requiring encounter between two reactants within the narrow window of excited state lifetime of the photoactive alkene, and competition from the unimolecular photoisomerization. Our groups have utilized macrocyclic cavitands, especially cucurbiturils(CB), to confine two alkene molecules within their cavities and steer them towards a single dimer regio‐ and stereoselectively. Although, primarily the review focuses on photocycloaddition within CBs, such reactions in closely related cavitands such as cyclodextrins (CD) and calixarenes (CA) are also briefly mentioned to provide a comparison with CBs. Studies on photocycloaddition of olefins within CB by other research groups are also briefly highlighted. A mechanistic model, with ability to predict the nature of the dimer product formed within the above reaction containers is included.

     
    more » « less