skip to main content


Title: Planned Special Event Network Optimization Model Considering Parking and Ridesharing Drop-Off

A planned special event (PSE), such as a sports game or a concert, can greatly affect the normal operations of a transportation system. To facilitate traffic, the road network is usually reconfigured, which could include road closures, reversed lanes, and limited access to parking facilities. For recurring PSEs, event-goers are often provided with recommended routes to designated parking areas in advance. Such network reconfiguration and route and parking recommendations are, however, often ad hoc in practice. This paper focuses on the PSE traffic planning problem. We propose to simultaneously consider parking, ridesharing, and network configuration. The problem is formulated as an optimization problem with integer decision variables. We developed a flow-based traffic simulation tool that is able to incorporate parking and lane changing (which cannot be ignored around ridesharing drop-off locations) to evaluate the objective function. We also developed effective and efficient heuristic solution algorithms. The models and algorithms are tested using the real network and traffic data from Super Bowl XLIX in 2015. The results show that our methods and approaches are able to produce an effective comprehensive traffic plan with reasonable computation time. For the Super Bowl XLIX case study, the resulting optimal plan is able to save 39.6% of the total vehicle-hours associated with default network configurations. Sensitivity analysis has also been conducted with respect to the compliance rate of travelers following recommended routes. It is found that the resulting near-optimal PSE traffic plans are able to tolerate some uncertainty in the compliance rate.

 
more » « less
NSF-PAR ID:
10374689
Author(s) / Creator(s):
 ;  
Publisher / Repository:
SAGE Publications
Date Published:
Journal Name:
Transportation Research Record: Journal of the Transportation Research Board
Volume:
2676
Issue:
3
ISSN:
0361-1981
Page Range / eLocation ID:
p. 227-242
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. As Autonomous Vehicles (AVs) become possible for E-hailing services operate, especially when telecom companies start deploying next-generation wireless networks (known as 5G), many new technologies may be applied in these vehicles. Dynamic-route-switching is one of these technologies, which could help vehicles find the best possible route based on real-time traffic information. However, allowing all AVs to choose their own optimal routes is not the best solution for a complex city network, since each vehicle ignores its negative effect on the road system due to the additional congestion it creates. As a result, with this system, some of the links may become over-congested, causing the whole road network system performance to degrade. Meanwhile, the travel time reliability, especially during the peak hours, is an essential factor to improve the customers' ride experience. Unfortunately, these two issues have received relatively less attention. In this paper, we design a link-based dynamic pricing model to improve the road network system and travel time reliability at the same time. In this approach, we assume that all links are eligible with the dynamic pricing, and AVs will be perfect informed with update traffic condition and follow the dynamic road pricing. A heuristic approach is developed to address this computationally difficult problem. The output includes link-based surcharge, new travel demand and traffic condition which would improve the system performance close to the System Optimal (SO) solution and maintain the travel time reliability. Finally, we evaluate the effectiveness and efficiency of the proposed model to the well-known test Sioux Falls network. 
    more » « less
  2. Drivers traveling on the road usually choose the route which will reduce their own travel time without giving a thought about how this decision will affect other users in the traffic network. Their behaviours leads to problem of oscillating congestion on the roads in the event of traffic disruption. This paper addresses this issue by adopting a competing optimal approach for informed and uninformed drivers. Informed drivers are proposed with alternate routes that reduce the system cost while uninformed drivers continue their journey on originally proposed routes. This strategy of dispersing traffic can reduce congestion significantly. The framework is implemented using Transmodeler, a traffic simulation by experimenting with varying percentage of informed drivers in the network. 
    more » « less
  3. Traffic systems exhibit supply-side uncertainty which is alleviated through real-time information. This article explores subscription models for a private agency sharing data at a fixed rate. A multiclass strategy-based equilibrium model is developed for two classes of subscribed and unsubscribed travelers, whose optimal strategy given the link-state costs is modeled as a Markov decision process (MDP) and a partially-observable MDP, respectively. A utility-based subscription choice model is formulated to study the impacts of subscription rates on the percentage of travelers choosing to subscribe. Solutions to the fixed-point formulation are determined using iterative algorithms. The proposed subscription model can be used for designing optimal subscription rates in various settings where real-time information can be a valuable routing tool such as express lanes, parking systems, roadside delivery, and routing of vulnerable road users. 
    more » « less
  4. Traffic systems exhibit supply-side uncertainty which is alleviated through real-time information. This article explores subscription models for a private agency sharing data at a fixed rate. A multiclass strategy-based equilibrium model is developed for two classes of subscribed and unsubscribed travelers, whose optimal strategy given the link-state costs is modeled as a Markov decision process (MDP) and a partially-observable MDP, respectively. A utility-based subscription choice model is formulated to study the impacts of subscription rates on the percentage of travelers choosing to subscribe. Solutions to the fixed-point formulation are determined using iterative algorithms. The proposed subscription model can be used for designing optimal subscription rates in various settings where real-time information can be a valuable routing tool such as express lanes, parking systems, roadside delivery, and routing of vulnerable road users. 
    more » « less
  5. Public transits, such as buses and subway lines, offer affordable ride-sharing services and reduce the road network traffic, thus have significant impacts in mitigating the urban traffic congestion problem. However, it is non-trivial to evaluate a new transit plan, such as a new bus route or a new subway line, of its future ridership prior to actual deployment, since the travel preferences of passengers along the planned routes may vary. In this paper, we make the first attempt to model passengers' preferences of making various transit choices using a Markov Decision Process (MDP). Moreover, we develop a novel inverse preference learning algorithm to infer the passengers' preferences and predict the future human behavior changes, e.g., ridership, of a new urban transit plan before its deployment. We validate our proposed framework using a unique real-world dataset (from Shenzhen, China) with three subway lines opened during the data time span. With the data collected from both before and after the transit plan deployments, Our evaluation results demonstrated that the proposed framework can predict the ridership with only 19.8% relative error, which is 23%-51% lower than other baseline approaches. 
    more » « less