A planned special event (PSE), such as a sports game or a concert, can greatly affect the normal operations of a transportation system. To facilitate traffic, the road network is usually reconfigured, which could include road closures, reversed lanes, and limited access to parking facilities. For recurring PSEs, event-goers are often provided with recommended routes to designated parking areas in advance. Such network reconfiguration and route and parking recommendations are, however, often ad hoc in practice. This paper focuses on the PSE traffic planning problem. We propose to simultaneously consider parking, ridesharing, and network configuration. The problem is formulated as an optimization problem with integer decision variables. We developed a flow-based traffic simulation tool that is able to incorporate parking and lane changing (which cannot be ignored around ridesharing drop-off locations) to evaluate the objective function. We also developed effective and efficient heuristic solution algorithms. The models and algorithms are tested using the real network and traffic data from Super Bowl XLIX in 2015. The results show that our methods and approaches are able to produce an effective comprehensive traffic plan with reasonable computation time. For the Super Bowl XLIX case study, the resulting optimal plan is able to save 39.6% of the total vehicle-hours associated with default network configurations. Sensitivity analysis has also been conducted with respect to the compliance rate of travelers following recommended routes. It is found that the resulting near-optimal PSE traffic plans are able to tolerate some uncertainty in the compliance rate.
more » « less- PAR ID:
- 10374689
- Publisher / Repository:
- SAGE Publications
- Date Published:
- Journal Name:
- Transportation Research Record: Journal of the Transportation Research Board
- Volume:
- 2676
- Issue:
- 3
- ISSN:
- 0361-1981
- Format(s):
- Medium: X Size: p. 227-242
- Size(s):
- p. 227-242
- Sponsoring Org:
- National Science Foundation
More Like this
-
Drivers traveling on the road usually choose the route which will reduce their own travel time without giving a thought about how this decision will affect other users in the traffic network. Their behaviours leads to problem of oscillating congestion on the roads in the event of traffic disruption. This paper addresses this issue by adopting a competing optimal approach for informed and uninformed drivers. Informed drivers are proposed with alternate routes that reduce the system cost while uninformed drivers continue their journey on originally proposed routes. This strategy of dispersing traffic can reduce congestion significantly. The framework is implemented using Transmodeler, a traffic simulation by experimenting with varying percentage of informed drivers in the network.more » « less
-
Given an urban development plan and the historical traffic observations over the road network, the Conditional Urban Traffic Estimation problem aims to estimate the resulting traffic status prior to the deployment of the plan. This problem is of great importance to urban development and transportation management, yet is very challenging because the plan would change the local travel demands drastically and the new travel demand pattern might be unprecedented in the historical data. To tackle these challenges, we propose a novel Conditional Urban Traffic Generative Adversarial Network (Curb-GAN), which provides traffic estimations in consecutive time slots based on different (unprecedented) travel demands, thus enables urban planners to accurately evaluate urban plans before deploying them. The proposed Curb-GAN adopts and advances the conditional GAN structure through a few novel ideas: (1) dealing with various travel demands as the "conditions" and generating corresponding traffic estimations, (2) integrating dynamic convolutional layers to capture the local spatial auto-correlations along the underlying road networks, (3) employing self-attention mechanism to capture the temporal dependencies of the traffic across different time slots. Extensive experiments on two real-world spatio-temporal datasets demonstrate that our Curb-GAN outperforms major baseline methods in estimation accuracy under various conditions and can produce more meaningful estimations.more » « less
-
As Autonomous Vehicles (AVs) become possible for E-hailing services operate, especially when telecom companies start deploying next-generation wireless networks (known as 5G), many new technologies may be applied in these vehicles. Dynamic-route-switching is one of these technologies, which could help vehicles find the best possible route based on real-time traffic information. However, allowing all AVs to choose their own optimal routes is not the best solution for a complex city network, since each vehicle ignores its negative effect on the road system due to the additional congestion it creates. As a result, with this system, some of the links may become over-congested, causing the whole road network system performance to degrade. Meanwhile, the travel time reliability, especially during the peak hours, is an essential factor to improve the customers' ride experience. Unfortunately, these two issues have received relatively less attention. In this paper, we design a link-based dynamic pricing model to improve the road network system and travel time reliability at the same time. In this approach, we assume that all links are eligible with the dynamic pricing, and AVs will be perfect informed with update traffic condition and follow the dynamic road pricing. A heuristic approach is developed to address this computationally difficult problem. The output includes link-based surcharge, new travel demand and traffic condition which would improve the system performance close to the System Optimal (SO) solution and maintain the travel time reliability. Finally, we evaluate the effectiveness and efficiency of the proposed model to the well-known test Sioux Falls network.more » « less
-
This paper investigates the idea of introducing learning algorithms into parking guidance and information systems that employ a central server, in order to provide estimated optimal parking searching strategies to travelers. The parking searching process on a network with uncertain parking availability can naturally be modeled as a Markov Decision Process (MDP). Such an MDP with full information can easily be solved by dynamic programming approaches. However, the probabilities of finding parking are difficult to define and calculate, even with accurate occupancy data. Learning algorithms are suitable for addressing this issue. The central server collects data from numerous travelers’ parking search experiences in the same area within a time window, computes approximated optimal parking searching strategy using a learning algorithm, and distributes the strategy to travelers. We propose an algorithm based on Q-learning, where the topology of the underlying transportation network is incorporated. This modification allows us to reduce the size of the problem dramatically, and thus the amount of data required to learn the optimal strategy. Numerical experiments conducted on a toy network show that the proposed learning algorithm outperforms the nearest-node greedy search strategy and the original Q-learning algorithm. Sensitivity analysis regarding the desired amount of training data is also performed.more » « less
-
Abstract—Virtual Network Functions (VNFs) are software implementation of middleboxes (MBs) (e.g., firewalls and proxy servers) that provide performance and security guarantees for virtual machine (VM) cloud applications. In this paper, we study a new VM flow migration problem for dynamic VNF-enabled cloud data centers (VDCs). The goal is to migrate the VM flows in the dynamic VDCs to minimize the total network traffic while load-balancing VNFs with limited processing capabilities. We refer to the problem as FMDV: flow migration in dynamic VDCs. We propose an optimal and efficient minimum cost flow-based flow migration algorithm and two benefit-based efficient heuristic algorithms to solve the FMDV. Via extensive simulations, we show that our algorithms are effective in mitigating dynamic cloud traffic while achieving load balance among VNFs. In particular, all our algorithms reduce dynamic network traffic in all cases and our optimal algorithm always achieves the best traffic-mitigation effect, reducing the network traffic by up to 28% compared to the case without flow migration.more » « less