skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Mixed Information Routing Framework Using Competing Equilibrium Strategy
Drivers traveling on the road usually choose the route which will reduce their own travel time without giving a thought about how this decision will affect other users in the traffic network. Their behaviours leads to problem of oscillating congestion on the roads in the event of traffic disruption. This paper addresses this issue by adopting a competing optimal approach for informed and uninformed drivers. Informed drivers are proposed with alternate routes that reduce the system cost while uninformed drivers continue their journey on originally proposed routes. This strategy of dispersing traffic can reduce congestion significantly. The framework is implemented using Transmodeler, a traffic simulation by experimenting with varying percentage of informed drivers in the network.  more » « less
Award ID(s):
1910397
PAR ID:
10465560
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
INFORMS Transportation and Logistics Society Second Triennial Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This research focuses on reducing traffic congestion using the competing strategies between informed and uninformed drivers. Under a mixed information framework, a navigation app provides within-day route suggestions to informed drivers using predicted information about the time-varying route habits of uninformed drivers. The informed users detour from initially proposed routes to minimize network congestion after traffic disruptions, pushing the system toward optimal equilibrium, while uninformed drivers make day-to-day decisions which push the system toward user equilibrium. Simulations considering varying fractions of informed drivers show that congestion is reduced during abrupt phase transition before reaching equilibrium by approximately 59.2% when 20% of drivers are informed, and is nearly eliminated when 80% of drivers are informed, which could be achieved through connected vehicle technologies. Shared memory multi-core parallelization improved the computational efficiency. 
    more » « less
  2. null (Ed.)
    This paper considers off-street parking for the cruising vehicles of transportation network companies (TNCs) to reduce the traffic congestion. We propose a novel business that integrates the shared parking service into the TNC platform. In the proposed model, the platform (a) provides interfaces that connect passengers, drivers and garage operators (commercial or private garages); (b) determines the ride fare, driver payment, and parking rates; (c) matches passengers to TNC vehicles for ride-hailing services; and (d) matches vacant TNC vehicles to unoccupied parking garages to reduce the cruising cost. A queuing-theoretic model is proposed to capture the matching process of passengers, drivers, and parking garages. A market-equilibrium model is developed to capture the incentives of the passengers, drivers, and garage operators. An optimization-based model is formulated to capture the optimal pricing of the TNC platform. Through a realistic case study, we show that the proposed business model will offer a Pareto improvement that benefits all stakeholders, which leads to higher passenger surplus, higher drivers surplus, higher garage operator surplus, higher platform profit, and reduced traffic congestion. 
    more » « less
  3. As Autonomous Vehicles (AVs) become possible for E-hailing services operate, especially when telecom companies start deploying next-generation wireless networks (known as 5G), many new technologies may be applied in these vehicles. Dynamic-route-switching is one of these technologies, which could help vehicles find the best possible route based on real-time traffic information. However, allowing all AVs to choose their own optimal routes is not the best solution for a complex city network, since each vehicle ignores its negative effect on the road system due to the additional congestion it creates. As a result, with this system, some of the links may become over-congested, causing the whole road network system performance to degrade. Meanwhile, the travel time reliability, especially during the peak hours, is an essential factor to improve the customers' ride experience. Unfortunately, these two issues have received relatively less attention. In this paper, we design a link-based dynamic pricing model to improve the road network system and travel time reliability at the same time. In this approach, we assume that all links are eligible with the dynamic pricing, and AVs will be perfect informed with update traffic condition and follow the dynamic road pricing. A heuristic approach is developed to address this computationally difficult problem. The output includes link-based surcharge, new travel demand and traffic condition which would improve the system performance close to the System Optimal (SO) solution and maintain the travel time reliability. Finally, we evaluate the effectiveness and efficiency of the proposed model to the well-known test Sioux Falls network. 
    more » « less
  4. The traffic congestion hits most big cities in the world - threatening long delays and serious reductions in air quality. City and local government officials continue to face challenges in optimizing crowd flow, synchronizing traffic and mitigating threats or dangerous situations. One of the major challenges faced by city planners and traffic engineers is developing a robust traffic controller that eliminates traffic congestion and imbalanced traffic flow at intersections. Ensuring that traffic moves smoothly and minimizing the waiting time in intersections requires automated vehicle detection techniques for controlling the traffic light automatically, which are still challenging problems. In this paper, we propose an intelligent traffic pattern collection and analysis model, named TPCAM, based on traffic cameras to help in smooth vehicular movement on junctions and set to reduce the traffic congestion. Our traffic detection and pattern analysis model aims at detecting and calculating the traffic flux of vehicles and pedestrians at intersections in real-time. Our system can utilize one camera to capture all the traffic flows in one intersection instead of multiple cameras, which will reduce the infrastructure requirement and potential for easy deployment. We propose a new deep learning model based on YOLOv2 and adapt the model for the traffic detection scenarios. To reduce the network burdens and eliminate the deployment of network backbone at the intersections, we propose to process the traffic video data at the network edge without transmitting the big data back to the cloud. To improve the processing frame rate at the edge, we further propose deep object tracking algorithm leveraging adaptive multi-modal models and make it robust to object occlusions and varying lighting conditions. Based on the deep learning based detection and tracking, we can achieve pseudo-30FPS via adaptive key frame selection. 
    more » « less
  5. This paper presents a data-driven approach for predicting the propagation of traffic congestion at road segments as a function of the congestion in their neighboring segments. In the past, this problem has mostly been addressed by modelling the traffic congestion over some standard physical phenomenon through which it is difficult to capture all the modalities of such a dynamic and complex system. While other recent works have focused on applying a generalized data-driven technique on the whole network at once, they often ignore intersection characteristics. On the contrary, we propose a city-wide ensemble of intersection level connected LSTM models and propose mechanisms for identifying congestion events using the predictions from the networks. To reduce the search space of likely congestion sinks we use the likelihood of congestion propagation in neighboring road segments of a congestion source that we learn from the past historical data. We validated our congestion forecasting framework on the real world traffic data of Nashville, USA and identified the onset of congestion in each of the neighboring segments of any congestion source with an average precision of 0.9269 and an average recall of 0.9118 tested over ten congestion events. 
    more » « less