skip to main content


Title: Thermospheric Traveling Atmospheric Disturbances in Austral Winter From GOCE and CHAMP
Abstract

In this study, we analyze the thermospheric density data provided by the Gravity Field and Steady‐State Ocean Circulation Explorer during June–August 2010–2013 at ∼260 km altitude and the Challenging Minisatellite Payload during June–August 2004–2007 at ∼370 km altitude to study high latitude traveling atmospheric disturbances (TADs) in austral winter. We extract the TADs along the satellite tracks from the density for varyingKp, and linearly extrapolate the TAD distribution toKp = 0; we call these the geomagnetic “quiet time” results here. We find that the quiet time spatial distribution of TADs depends on the spatial scale (along‐track horizontal wavelength) and altitude. Atz∼ 260 km, TADs with ≤ 330 km are seen mainly around and slightly downstream of the Southern Andes‐Antarctic region, while TADs with > 800 km are distributed fairly evenly around the geographic South pole at latitudes ≥60°S. Atz∼ 370 km, TADs with ≤ 330 km are relatively weak and are distributed fairly evenly over Antarctica, while TADs with > 330 km make up a bipolar distribution. For the latter, the larger size lobe is centered at ∼60°S, and is located around, downstream and somewhat upstream of the Andes/Antarctic Peninsula, while the smaller lobe is located over the Antarctic continent at 90°–150°E. We also find that the TAD morphology forKp ≥ 2 and > 330 km depends strongly on geomagnetic activity, likely due to auroral activity, with greatly enhanced TAD amplitudes with increasingKp.

 
more » « less
Award ID(s):
1832988
NSF-PAR ID:
10374707
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Volume:
126
Issue:
9
ISSN:
2169-9380
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Terrestrial lightning frequently serves as a loss mechanism for energetic electrons in the Van Allen radiation belts, leading to lightning‐induced electron precipitation (LEP). Regardless of the specific causes, energetic electron precipitation from the radiation belts in general has a significant influence on the ozone concentration in the stratosphere and mesosphere. The atmospheric chemical effects induced by LEP have been previously investigated using subionospheric VLF measurements at Faraday station, Antarctica (65.25°S, 64.27°W,L= 2.45). However, there exist large variations in the precipitation flux, ionization production, and occurrence rate of LEP events depending on the peak current of the parent lightning discharge, as well as the season, location, and intensity of the thunderstorm activity. These uncertainties motivate us to revisit the calculation of atmospheric chemical changes produced by LEP. In this study, we combine a well‐validated LEP model and first‐principles atmospheric chemical simulation, and investigate three intense storms in the year of 2013, 2015, and 2017 at the magnetic latitude of 50., 32., and 35., respectively. Modeling results show that the LEP events in these storms can cumulatively drive significant changes in the,, andconcentration in the mesosphere. These changes are as high as,, andat 75–85 km altitude, respectively, and comparable to the effects typically induced by other types of radiation belt electron precipitation events. Considering the high occurrence rate of thunderstorms around the globe, the long‐term global chemical effects produced by LEP events need to be properly quantified.

     
    more » « less
  2. Abstract

    We present a statistical investigation of the effects of interplanetary magnetic field (IMF) on hemispheric asymmetry in auroral currents. Nearly 6 years of magnetic field measurements from Swarm A and C satellites are analyzed. Bootstrap resampling is used to remove the difference in the number of samples and IMF conditions between the local seasons and the hemispheres. Currents are stronger in Northern Hemisphere (NH) than Southern Hemisphere (SH) for IMF Bin NH (Bin SH) in most local seasons under both signs of IMF B. For Bin NH (Bin SH), the hemispheric difference in currents is small except in local winter when currents in NH are stronger than in SH. During Band Bin NH (Band Bin SH), the largest hemispheric asymmetry occurs in local winter and autumn, when the NH/SH ratio of field aligned current (FAC) is 1.180.09 in winter and 1.170.09 in autumn. During Band Bin NH (Band Bin SH), the largest asymmetry is observed in local autumn with NH/SH ratio of 1.160.07 for FAC. We also find an explicit Beffect on auroral currents in a given hemisphere: on average Bin NH and Bin SH causes larger currents than vice versa. The explicit Beffect on divergence‐free current during IMF Bis in very good agreement with the Beffect on the cross polar cap potential from the Super Dual Auroral Radar Network dynamic model except at SH equinox and NH summer.

     
    more » « less
  3. Abstract

    Plasma sheet electron precipitation into the diffuse aurora is critical for magnetosphere‐ionosphere coupling. Recent studies have shown that electron phase space holes can pitch‐angle scatter electrons and may produce plasma sheet electron precipitation. These studies have assumed identical electron hole parameters to estimate electron scattering rates (Vasko et al., 2018,https://doi.org/10.1063/1.5039687). In this study, we have re‐evaluated the efficiency of this scattering by incorporating realistic electron hole properties from direct spacecraft observations into computing electron diffusion rates and lifetimes. The most important electron hole properties in this evaluation are their distributions in velocity and spatial scale and electric field root‐mean‐square intensity (). Using direct measurements of electron holes during a plasma injection event observed by the Van Allen Probe at, we find that when4 mV/m electron lifetimes can drop below 1 h and are mostly within strong diffusion limits at energies below10 keV. During an injection observed by the THEMIS spacecraft at, electron holes with even typical intensities (1 mV/m) can deplete low‐energy (a few keV) plasma sheet electrons within tens of minutes following injections and convection from the tail. Our results confirm that electron holes are a significant contributor to plasma sheet electron precipitation during injections.

     
    more » « less
  4. Abstract

    Letbe integers with, and set. Erdős proved that when, eachn‐vertex nonhamiltonian graphGwith minimum degreehas at mostedges. He also provides a sharpness examplefor all such pairs. Previously, we showed a stability version of this result: fornlarge enough, every nonhamiltonian graphGonnvertices withand more thanedges is a subgraph of. In this article, we show that not only does the graphmaximize the number of edges among nonhamiltonian graphs withnvertices and minimum degree at leastd, but in fact it maximizes the number of copies of any fixed graphFwhennis sufficiently large in comparison withdand. We also show a stronger stability theorem, that is, we classify all nonhamiltoniann‐vertex graphs withand more thanedges. We show this by proving a more general theorem: we describe all such graphs with more thancopies offor anyk.

     
    more » « less
  5. Abstract

    Cadmium (Cd) is a trace metal whose distribution in the ocean bears a remarkable resemblance to the nutrient phosphate (PO43−). This resemblance has led to the use of Cd as a proxy for ocean nutrient cycling in paleoceanographic applications, but the processes governing the cycling of Cd in the modern ocean remain unclear. In this study, we use previously published Cd observations and an Artificial Neural Network to produce a dissolved Cd climatology that reproduces the observed subtle deviations between the Cd anddistributions. We use the Cd andclimatologies, along with an ocean circulation inverse model, to diagnose the biogeochemical sources and sinks of dissolved Cd and. Our calculations reveal that dissolved Cd, like, is removed in the surface ocean and has a source in the subsurface, consistent with the simultaneous incorporation of Cd andinto sinking organic particles. However, there are also contrasts between the cycling of dissolved Cd andIn particular, thesurface export ratio varies 8‐fold across latitudes, reaching highest values in the iron‐limited sub‐Antarctic Southern Ocean. This depletes Cd relative toin the low‐latitude thermocline while adding excess Cd to deep waters by the regeneration of Cd‐enriched particles. Also, Cd tends to regenerate slightly deeper thanin the subsurface ocean, and theregeneration ratio reaches a maximum at 700–1,500 m. These contrasts are responsible for a slight concavity in therelationship and should be considered when interpreting paleoceanographic Cd records.

     
    more » « less