skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Large Seasonal and Habitat Differences in Methane Ebullition on the Amazon Floodplain
Abstract Tropical floodplains are an important source of methane (CH4) to the atmosphere, and ebullitive fluxes are likely to be important. We report direct measurements of CH4ebullition in common habitats on the Amazon floodplain over two years based on floating chambers that allowed detection of bubbles, and submerged bubble traps. Ebullition was highly variable in space and time. Of the 840 floating chamber measurements (equivalent to 8,690 min of 10‐min deployments), 22% captured bubbles. Ebullitive CH4fluxes, measured using bubble traps deployed for a total of approximately 230 days, ranged from 0 to 109 mmol CH4m−2 d−1, with a mean of 4.4 mmol CH4m−2 d−1. During falling water, a hydroacoustic echosounder detected bubbles in 24% of the 70‐m segments over 34 km. Ebullitive flux increased as the water level fell faster during falling water periods. In flooded forests, highest ebullitive fluxes occurred during falling water, while in open water and herbaceous plant habitats, higher ebullitive fluxes were measured during low water periods. The contribution of diffusive plus ebullitive CH4flux represented by ebullition varied from 1% (high and rising water in open water of the lake) to 93% (falling water in flooded forests) based on bubble traps. Combining ebullitive and diffusive fluxes among habitats in relation to variations in water depth and areal coverage of aquatic habitats provides the basis for improved floodplain‐wide estimates of CH4evasion.  more » « less
Award ID(s):
1753856
PAR ID:
10374749
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Biogeosciences
Volume:
126
Issue:
7
ISSN:
2169-8953
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Headwater streams are known sources of methane (CH4) to the atmosphere, but their contribution to global scale budgets remains poorly constrained. While efforts have been made to better understand diffusive fluxes of CH4in streams, much less attention has been paid to ebullitive fluxes. We examine the temporal and spatial heterogeneity of CH4ebullition from four lowland headwater streams in the temperate northeastern United States over a 2‐yr period. Ebullition was observed in all monitored streams with an overall mean rate of 1.00 ± 0.23 mmol CH4m−2d−1, ranging from 0.01 to 1.79 to mmol CH4m−2d−1across streams. At biweekly timescales, rates of ebullition tended to increase with temperature. We observed a high degree of spatial heterogeneity in CH4ebullition within and across streams. Yet, catchment land use was not a simple predictor of this heterogeneity, and instead patches scale variability weakly explained by water depth and sediment organic matter content and quality. Overall, our results support the prevalence of CH4ebullition from streams and high levels of variability characteristic of this process. Our findings also highlight the need for robust temporal and spatial sampling of ebullition in lotic ecosystems to account for this high level of heterogeneity, where multiple sampling locations and times are necessary to accurately represent the mean rate of flux in a stream. The heterogeneity observed likely indicates a complex set of drivers affect CH4ebullition from streams which must be considered when upscaling site measurements to larger spatial scales. 
    more » « less
  2. Large uncertainties in estimates of methane (CH4) emissions from tropical inland waters reflect the paucity of information at appropriate temporal and spatial scales. CH4 concentrations, diffusive and ebullitive fluxes, and environmental parameters in contrasting aquatic habitats of Lake Janauaca´, an Amazon floodplain lake, measured for two years revealed patterns in temporal and spatial variability related to different aquatic habitats and environmental conditions. CH4 concentrations ranged from below detection to 96 lM, CH4 diffusive fluxes from below detection to 2342 lmol m-2 h-1, and CH4 ebullitive fluxes from 0 to 190 mmol m-2 d-1. Vegetated aquatic habitats had higher surface CH4 concentrations than open water habitats, and no significant differences in diffusive CH4 fluxes, likely due to higher k values measured in open water habitats. CH4 emissions were enhanced after a prolonged low water period, when the exposed sediments were colonized by herbaceous plants that decomposed after water levels rose, possibly fueling CH4 production. Statistical models indicated the importance of variables related to CH4 production (temperature, dissolved organic carbon) and consumption (dissolved nitrogen, oxygenated water column), as well as maximum depth. 
    more » « less
  3. Abstract Hydropower reservoirs are well‐known emitters of greenhouse gases to the atmosphere. This is due in part to seasonal water level fluctuations that transfer terrestrial C and N from floodplains to reservoirs. Partial pressures and fluxes of the greenhouse gases CH4, CO2, and N2O are also a function of in situ biological C and N cycling and overall ecosystem metabolism, which varies on a diel basis within inland waters. Thus, greenhouse gas emissions in hydropower reservoirs likely vary over seasonal and diel time scales with local hydrology and ecosystem metabolism. China's Three Gorges Reservoir is among the largest and newest in the world, with a floodplain that encompasses approximately one third of the reservoir area. We measured diel partial pressures and fluxes of greenhouse gases in ponds on the Three Gorges Floodplain. We repeated these measurements on the submerged floodplain following inundation by the Three Gorges Reservoir. During reservoir drawdown, CH4ebullition comprised 60–68% of emissions from floodplain ponds to the atmosphere. Using linear mixed effects modeling, we show that partial pressures of CH4and CO2and diffusive CO2fluxes in floodplain ponds varied on a diel basis with in situ respiration. Floodplain inundation by the Three Gorges Reservoir significantly moderated areal CH4diffusion and ebullition. DielpCO2,pCH4,pN2O, and diffusive fluxes of CO2on the submerged floodplain were also driven by in situ respiration. The drawdown/inundation cycle of the Three Gorges Reservoir therefore changes the magnitudes of aquatic greenhouse gas fluxes on its floodplain. 
    more » « less
  4. Abstract Inland waters play a major role in global greenhouse gas (GHG) budgets. The smallest of these systems (i.e., ponds) have a particularly large—but poorly constrained—emissions footprint at the global scale. Much of this uncertainty is due to a poor understanding of temporal variability in emissions. Here, we conducted high‐resolution temporal sampling to quantify GHG exchange between four temperate constructed ponds and the atmosphere on an annual basis. We show these ponds are a net source of GHGs to the atmosphere (564.4 g CO2‐eq m−2 yr−1), driven by highly temporally variable diffusive methane (CH4) emissions. Diffusive CH4release to the atmosphere was twice as high during periods when the ponds had a stratified water column than when it was mixed. Ebullitive CH4release was also higher during stratification. Building ponds to favor mixed conditions thus presents an opportunity to minimize the global GHG footprint of future pond construction. 
    more » « less
  5. Abstract Understanding methane (CH4) emission from thermokarst lakes is crucial for predicting the impacts of abrupt thaw on the permafrost carbon-climate feedback. However, observational evidence, especially from high-altitude permafrost regions, is still scarce. Here, by combining field surveys, radio- and stable-carbon isotopic analyses, and metagenomic sequencing, we present multiple characteristics of CH4emissions from 120 thermokarst lakes in 30 clusters along a 1100 km transect on the Tibetan Plateau. We find that thermokarst lakes have high CH4emissions during the ice-free period (13.4 ± 1.5 mmol m−2d−1; mean ± standard error) across this alpine permafrost region. Ebullition constitutes 84% of CH4emissions, which are fueled primarily by young carbon decomposition through the hydrogenotrophic pathway. The relative abundances of methanogenic genes correspond to the observed CH4fluxes. Overall, multiple parameters obtained in this study provide benchmarks for better predicting the strength of permafrost carbon-climate feedback in high-altitude permafrost regions. 
    more » « less