skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On the Detection of COVID‐Driven Changes in Atmospheric Carbon Dioxide
Abstract We assess the detectability of COVID‐like emissions reductions in global atmospheric CO2concentrations using a suite of large ensembles conducted with an Earth system model. We find a unique fingerprint of COVID in the simulated growth rate of CO2sampled at the locations of surface measurement sites. Negative anomalies in growth rates persist from January 2020 through December 2021, reaching a maximum in February 2021. However, this fingerprint is not formally detectable unless we force the model with unrealistically large emissions reductions (2 or 4 times the observed reductions). Internal variability and carbon‐concentration feedbacks obscure the detectability of short‐term emission reductions in atmospheric CO2. COVID‐driven changes in the simulated, column‐averaged dry air mole fractions of CO2are eclipsed by large internal variability. Carbon‐concentration feedbacks begin to operate almost immediately after the emissions reduction; these feedbacks reduce the emissions‐driven signal in the atmosphere carbon reservoir and further confound signal detection.  more » « less
Award ID(s):
1948664 1752724
PAR ID:
10374887
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
48
Issue:
22
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The decline in global emissions of carbon dioxide due to the COVID‐19 pandemic provides a unique opportunity to investigate the sensitivity of the global carbon cycle and climate system to emissions reductions. Recent efforts to study the response to these emissions declines has not addressed their impact on the ocean, yet ocean carbon absorption is particularly susceptible to changing atmospheric carbon concentrations. Here, we use ensembles of simulations conducted with an Earth system model to explore the potential detection of COVID‐related emissions reductions in the partial pressure difference in carbon dioxide between the surface ocean and overlying atmosphere (ΔpCO2), a quantity that is regularly measured. We find a unique fingerprint in global‐scale ΔpCO2that is attributable to COVID, though the fingerprint is difficult to detect in individual model realizations unless we force the model with a scenario that has four times the observed emissions reduction. 
    more » « less
  2. La Niña climate anomalies have historically been associated with substantial reductions in the atmospheric CO2growth rate. However, the 2021 La Niña exhibited a unique near-neutral impact on the CO2growth rate. In this study, we investigate the underlying mechanisms by using an ensemble of net CO2fluxes constrained by CO2observations from the Orbiting Carbon Observatory-2 in conjunction with estimates of gross primary production and fire carbon emissions. Our analysis reveals that the close-to-normal atmospheric CO2growth rate in 2021 was the result of the compensation between increased net carbon uptake over the tropics and reduced net carbon uptake over the Northern Hemisphere mid-latitudes. Specifically, we identify that the extreme drought and warm anomalies in Europe and Asia reduced the net carbon uptake and offset 72% of the increased net carbon uptake over the tropics in 2021. This study contributes to our broader understanding of how regional processes can shape the trajectory of atmospheric CO2concentration under climate change. 
    more » « less
  3. Abstract In climate studies, it is crucial to distinguish between changes caused by natural variability and those resulting from external forcing. Here we use a suite of numerical experiments based on the ECCO‐Darwin ocean biogeochemistry model to separate the impact of the atmospheric carbon dioxide (CO2) growth rate and climate on the ocean carbon sink — with a goal of disentangling the space‐time variability of the dominant drivers. When globally integrated, the variable atmospheric growth rate and climate exhibit similar magnitude impacts on ocean carbon uptake. At local scales, interannual variability in air‐sea CO2flux is dominated by climate. The implications of our study for real‐world ocean observing systems are clear: in order to detect future changes in the ocean sink due to slowing atmospheric CO2growth rates, better observing systems and constraints on climate‐driven ocean variability are required. 
    more » « less
  4. Abstract Large Igneous Province (LIP) eruptions are thought to have driven environmental and climate change over wide temporal scales ranging from a few to thousands of years. Since the radiative effects and atmospheric lifetime of carbon dioxide (CO2, warming) and sulfur dioxide (SO2, cooling) are very different, the conventional assumption has been to analyze the effects of CO2and SO2emissions separately and add them together afterward. In this study, we test this assumption by analyzing the joint effect of CO2and SO2on the marine carbonate cycle using a biogeochemical carbon cycle box model (Long‐term Ocean‐atmosphere‐Sediment CArbon cycle Reservoir Model). By performing model runs with very fine temporal resolution (∼0.1‐year timestep), we analyze the effects of LIP carbon and sulfur gas emissions on timescales ranging from an individual eruption (hundreds to thousands of years) to the entire long‐term carbon cycle (>100,000 years). We find that, contrary to previous work, sulfur emissions have significant long‐term (>1,000 years) effects on the marine carbon cycle (dissolved inorganic carbon, pH, alkalinity, and carbonate compensation depth). This is due to two processes: the strongly temperature‐dependent equilibrium coefficients for marine carbonate chemistry and the few thousand‐year timescale for ocean overturning circulation. Thus, the effects of volcanic sulfur are not simply additive to the impact of carbon emissions. We develop a causal mechanistic framework to visualize the feedbacks associated with combined carbon and sulfur emissions and the associated timescales. Our results provide a new perspective for understanding the complex feedback mechanisms controlling the environmental effects of large volcanic eruptions over Earth history. 
    more » « less
  5. Abstract The interannual to decadal variability in natural carbon sinks limits the explanation of recent changes in atmospheric CO2concentration. Here we account for interannual and decadal variability using a simple quasi-mechanistic model of the net land carbon exchange with terms scaling with atmospheric CO2and a weighted spatial average of temperature anomalies. This approach reduces the unexplained residual in Earth’s carbon cycle budget from ±0.76 GtC per year obtained using process models to ±0.50 GtC per year, with the largest improvements on decadal timescales despite assuming constant dynamics. Our findings reveal remarkable stability of the carbon cycle and allow verification of reported global emissions to within 4.4% (95% confidence level) over the five-year stocktake cycle of the Paris Agreement—half the uncertainty reported previously. 
    more » « less