skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1752724

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Phytoplankton in the Arctic Ocean and sub‐Arctic seas support a rich marine food web that sustains Indigenous communities as well as some of the world's largest fisheries. As sea ice retreat leads to further expansion of these fisheries, there is growing need for predictions of phytoplankton net primary production (NPP), which will likely allow better management of food resources in the region. Here, we use perfect model simulations of the Community Earth System Model version 2 (CESM2) to quantify short‐term (month to 2 years) predictability of Arctic Ocean NPP. Our results indicate that NPP is potentially predictable during the most productive summer months for at least 2 years, largely due to the highly predictable Arctic shelves where fisheries in the Arctic are projected to expand. Sea surface temperatures, which are an important limitation on phytoplankton growth and also are predictable for multiple years, are the most important physical driver of this predictability. Finally, we find that the predictability of NPP in the 2030s is enhanced relative to the 2010s, indicating that the utility of these predictions may increase in the near future. This work indicates that operational forecasts using Earth system models may provide moderately skillful predictions of NPP in the Arctic, possibly aiding in the management of Arctic marine resources. 
    more » « less
  2. Abstract Marine heatwaves have profoundly impacted marine ecosystems over large areas of the world oceans, calling for improved understanding of their dynamics and predictability. Here, we critically review the recent substantial advances in this active area of research, including the exploration of the three-dimensional structure and evolution of these extremes, their drivers, their connection with other extremes in the ocean and over land, future projections, and assessment of their predictability and current prediction skill. To make progress on predicting and projecting marine heatwaves and their impacts, a more complete mechanistic understanding of these extremes over the full ocean depth and at the relevant spatial and temporal scales is needed, together with models that can realistically capture the leading mechanisms at those scales. Sustained observing systems, as well as measuring platforms that can be rapidly deployed, are essential to achieve comprehensive event characterizations while also chronicling the evolving nature of these extremes and their impacts in our changing climate. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  3. Abstract Pinatubo erupted during the first decadal survey of ocean biogeochemistry, embedding its climate fingerprint into foundational ocean biogeochemical observations and complicating the interpretation of long‐term biogeochemical change. Here, we quantify the influence of the Pinatubo climate perturbation on externally forced decadal and multi‐decadal changes in key ocean biogeochemical quantities using a large ensemble simulation of the Community Earth System Model designed to isolate the effects of Pinatubo, which cleanly captures the ocean biogeochemical response to the eruption. We find increased uptake of apparent oxygen utilization and preindustrial carbon over 1993–2003. Nearly 100% of the forced response in these quantities are attributable to Pinatubo. The eruption caused enhanced ventilation of the North Atlantic, as evidenced by deep ocean chlorofluorocarbon changes that appear 10–15 years after the eruption. Our results help contextualize observed change and contribute to improved constraints on uncertainty in the global carbon budget and ocean deoxygenation. 
    more » « less
  4. Abstract Anthropogenic carbon emissions and associated climate change are driving rapid warming, acidification, and deoxygenation in the ocean, which increasingly stress marine ecosystems. On top of long‐term trends, short term variability of marine stressors can have major implications for marine ecosystems and their management. As such, there is a growing need for predictions of marine ecosystem stressors on monthly, seasonal, and multi‐month timescales. Previous studies have demonstrated the ability to make reliable predictions of the surface ocean physical and biogeochemical state months to years in advance, but few studies have investigated forecast skill of multiple stressors simultaneously or assessed the forecast skill below the surface. Here, we use the Community Earth System Model (CESM) Seasonal to Multiyear Large Ensemble (SMYLE) along with novel observation‐based biogeochemical and physical products to quantify the predictive skill of dissolved inorganic carbon (DIC), dissolved oxygen, and temperature in the surface and subsurface ocean. CESM SMYLE demonstrates high physical and biogeochemical predictive skill multiple months in advance in key oceanic regions and frequently outperforms persistence forecasts. We find up to 10 months of skillful forecasts, with particularly high skill in the Northeast Pacific (Gulf of Alaska and California Current Large Marine Ecosystems) for temperature, surface DIC, and subsurface oxygen. Our findings suggest that dynamical marine ecosystem prediction could support actionable advice for decision making. 
    more » « less
  5. Abstract The Blob was the early manifestation of the Northeast Pacific marine heat wave from 2013 to 2016. While the upper ocean temperature in the Blob has been well described, the impacts on marine biogeochemistry have not been fully studied. Here, we characterize and develop understanding of Eastern North Pacific upper ocean biogeochemical properties during the Winter of 2013–2014 using in situ observations, an observation‐based product, and reconstructions from a collection of ocean models. We find that the Blob is associated with significant upper ocean biogeochemical anomalies: A 5% increase in aragonite saturation state (temporary reprieve of ocean acidification) and a 3% decrease in oxygen concentration (enhanced deoxygenation). Anomalous advection and mixing drive the aragonite saturation anomaly, while anomalous heating and air‐sea gas exchange drive the oxygen anomaly. Marine heatwaves do not necessarily serve as an analog for future change as they may enhance or mitigate long‐term trends. 
    more » « less
  6. Abstract We assess the detectability of COVID‐like emissions reductions in global atmospheric CO2concentrations using a suite of large ensembles conducted with an Earth system model. We find a unique fingerprint of COVID in the simulated growth rate of CO2sampled at the locations of surface measurement sites. Negative anomalies in growth rates persist from January 2020 through December 2021, reaching a maximum in February 2021. However, this fingerprint is not formally detectable unless we force the model with unrealistically large emissions reductions (2 or 4 times the observed reductions). Internal variability and carbon‐concentration feedbacks obscure the detectability of short‐term emission reductions in atmospheric CO2. COVID‐driven changes in the simulated, column‐averaged dry air mole fractions of CO2are eclipsed by large internal variability. Carbon‐concentration feedbacks begin to operate almost immediately after the emissions reduction; these feedbacks reduce the emissions‐driven signal in the atmosphere carbon reservoir and further confound signal detection. 
    more » « less
  7. Abstract We use a statistical emulation technique to construct synthetic ensembles of global and regional sea‐air carbon dioxide (CO2) flux from four observation‐based products over 1985–2014. Much like ensembles of Earth system models that are constructed by perturbing their initial conditions, our synthetic ensemble members exhibit different phasing of internal variability and a common externally forced signal. Our synthetic ensembles illustrate an important role for internal variability in the temporal evolution of global and regional CO2flux and produce a wide range of possible trends over 1990–1999 and 2000–2009. We assume a specific externally forced signal and calculate the rank of the observed trends within the distribution of statistically modeled synthetic trends during these periods. Over the decade 1990–1999, three of four observation‐based products exhibit small negative trends in globally integrated sea‐air CO2flux (i.e., enhanced ocean CO2absorption with time) that are within one standard deviation of the mean in their respective synthetic ensembles. Over the decade 2000–2009, however, three products show large negative trends in globally integrated sea‐air CO2flux that have a low rate of occurrence in their synthetic ensembles. The largest positive trends in global and Southern Ocean flux over 1990–1999 and the largest negative trends over 2000–2009 fall nearly two standard deviations away from the mean in their ensembles. Our approach provides a new perspective on the important role of internal variability in sea‐air CO2flux trends, and furthers understanding of the role of internal and external processes in driving observed sea‐air CO2flux variability. 
    more » « less
  8. Abstract Internal climate variability plays an important role in the abundance and distribution of phytoplankton in the global ocean. Previous studies using large ensembles of Earth system models (ESMs) have demonstrated their utility in the study of marine phytoplankton variability. These ESM large ensembles simulate the evolution of multiple alternate realities, each with a different phasing of internal climate variability. However, ESMs may not accurately represent real world variability as recorded via satellite and in situ observations of ocean chlorophyll over the past few decades. Observational records of surface ocean chlorophyll equate to a single ensemble member in the large ensemble framework, and this can cloud the interpretation of long‐term trends: are they externally forced, caused by the phasing of internal variability, or both? Here, we use a novel statistical emulation technique to place the observational record of surface ocean chlorophyll into the large ensemble framework. Much like a large initial condition ensemble generated with an ESM, the resulting synthetic ensemble represents multiple possible evolutions of ocean chlorophyll concentration, each with a different sampling of internal climate variability. We further demonstrate the validity of our statistical approach by recreating an ESM ensemble of chlorophyll using only a single ESM ensemble member. We use the synthetic ensemble to explore the interpretation of long‐term trends in the presence of internal variability and find a wider range of possible trends in chlorophyll due to the sampling of internal variability in subpolar regions than in subtropical regions. 
    more » « less
  9. Abstract The decline in global emissions of carbon dioxide due to the COVID‐19 pandemic provides a unique opportunity to investigate the sensitivity of the global carbon cycle and climate system to emissions reductions. Recent efforts to study the response to these emissions declines has not addressed their impact on the ocean, yet ocean carbon absorption is particularly susceptible to changing atmospheric carbon concentrations. Here, we use ensembles of simulations conducted with an Earth system model to explore the potential detection of COVID‐related emissions reductions in the partial pressure difference in carbon dioxide between the surface ocean and overlying atmosphere (ΔpCO2), a quantity that is regularly measured. We find a unique fingerprint in global‐scale ΔpCO2that is attributable to COVID, though the fingerprint is difficult to detect in individual model realizations unless we force the model with a scenario that has four times the observed emissions reduction. 
    more » « less
  10. Abstract Interannual variations in the flux of carbon dioxide (CO2) between the land surface and the atmosphere are the dominant component of interannual variations in the atmospheric CO2growth rate. Here, we investigate the potential to predict variations in these terrestrial carbon fluxes 1–10 years in advance using a novel set of retrospective decadal forecasts of an Earth system model. We demonstrate that globally-integrated net ecosystem production (NEP) exhibits high potential predictability for 2 years following forecast initialization. This predictability exceeds that from a persistence or uninitialized forecast conducted with the same Earth system model. The potential predictability in NEP derives mainly from high predictability in ecosystem respiration, which itself is driven by vegetation carbon and soil moisture initialization. Our findings unlock the potential to forecast the terrestrial ecosystem in a changing environment. 
    more » « less