Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We present a survey undertaken with the Atacama Large Millimeter/submillimeter Array (ALMA) to study the galaxies associated with a representative sample of 16 damped Lyαabsorbers (DLAs) atz ≈ 4.1–4.5, using the [Cii] 158μm ([Cii]) line. We detect seven [Cii]-emitting galaxies in the fields of five DLAs, all of which have absorption metallicity [M/H] > −1.5. We find that the detectability of these Hi-selected galaxies with ALMA is a strong function of DLA metallicity, with a detection rate of % for DLAs with [M/H] > −1.5 and 0+18% for DLAs with [M/H] < −1.5. The identified DLA galaxies have far-IR properties similar to those of typical star-forming galaxies atz ∼ 4, with estimated obscured star formation rates ranging from ≲6M⊙yr−1to 110M⊙yr−1. High-metallicity DLAs therefore provide an efficient way to identify and study samples of high-redshift, star-forming galaxies, without preselecting the galaxies by their emission properties. The agreement between the velocities of the metal absorption lines of the DLA and the [Cii] emission line of the DLA galaxy indicates that the metals within the DLA originated in the galaxy. With observed impact parameters between 14 and 59 kpc, this indicates that star-forming galaxies atz ∼ 4 have a substantial reservoir of dense, cold, neutral gas within their circumgalactic medium that has been enriched with metals from the galaxy.more » « lessFree, publicly-accessible full text available April 2, 2026
-
Abstract We use the Karl G. Jansky Very Large Array (VLA) and the Atacama Large Millimeter/submillimeter Array to detect CO(1–0), CO(3–2), and rest-frame 349 GHz continuum emission from an Hi-selected galaxy, DLA1020+2733g, atz ≈ 2.3568 in the field of thez= 2.3553 damped Lyαabsorber (DLA) toward QSO J1020+2733. The VLA CO(1–0) detection yields a molecular gas mass of (2.84 ± 0.42) × 1011 × (αCO/4.36)M⊙, the largest ever measured in an Hi-selected galaxy. The DLA metallicity is +0.28 ± 0.16, from the Zniiλ2026 absorption line detected in a Keck Echellette Spectrograph and Imager spectrum. This continues the trend of high-metallicity DLAs being frequently associated with massive galaxies. We obtain a star formation rate (SFR) of ≲400M⊙yr−1from the rest-frame 349 GHz continuum emission and a relatively long molecular gas depletion timescale of ≳0.6 Gyr. The excitation of theJ= 3 rotational level is subthermal, with , suggesting that DLA1020+2733g has a low SFR surface density. The large velocity spread of the CO lines, ≈500 km s−1, and the long molecular gas depletion timescale suggest that DLA1020+2733g is likely to be a cold rotating-disk galaxy.more » « lessFree, publicly-accessible full text available March 19, 2026
-
Abstract We report that the neutral hydrogen (Hi) mass density of the Universe (ρHi) increases with cosmic time sincez ∼ 5, peaks atz ∼ 3, and then decreases towardz ∼ 0. This is the first result of Qz5, our spectroscopic survey of 63 quasars atz ≳ 5 with VLT/X-SHOOTER and Keck/ESI aimed at characterizing intervening Higas absorbers atz ∼ 5. The main feature of Qz5 is the high resolution (R ∼ 7000–9000) of the spectra, which allows us to (1) accurately detect high column density Higas absorbers in an increasingly neutral intergalactic medium atz ∼ 5 and (2) determine the reliability of previousρHimeasurements derived with lower resolution spectroscopy. We find five intervening damped Lyαabsorbers (DLAs) atz > 4.5, which corresponds to the lowest DLA incidence rate ( ) atz ≳ 2. We also measure the lowestρHiatz ≳ 2 from our sample of DLAs and subDLAs, corresponding toρHi Mpc−3atz ∼ 5. Taking into account our measurements atz ∼ 5 and systematic biases in the DLA detection rate at lower spectral resolutions, we conclude thatρHidoubles fromz ∼ 5 toz ∼ 3. From these results emerges a qualitative agreement between how the cosmic densities of Higas mass, molecular gas mass, and star formation rate build up with cosmic time.more » « lessFree, publicly-accessible full text available April 1, 2026
-
Abstract We present Keck Cosmic Web Imager Lyαintegral field spectroscopy of the fields surrounding 14 damped Lyαabsorbers (DLAs) atz≈ 2. Of these 14 DLAs, nine have high metallicities ([M/H] > − 0.3), and four of those nine feature a CO-emitting galaxy at an impact parameter ≲30 kpc. Our search reaches median Lyαline flux sensitivities of ∼2 × 10−17erg s−1cm−2over apertures of ∼6 kpc and out to impact parameters of ∼50 kpc. We recover the Lyαflux of three known Lyα-emitting Hi-selected galaxies in our sample. In addition, we find two Lyαemitters at impact parameters of ≈50–70 kpc from the high-metallicity DLA atz≈ 1.96 toward QSO B0551-366. This field also contains a massive CO-emitting galaxy at an impact parameter of ≈15 kpc. Apart from the field with QSO B0551-366, we do not detect significant Lyαemission in any of the remaining eight high-metallicity DLA fields. Considering the depth of our observations and our ability to recover previously known Lyαemitters, we conclude that Hi-selected galaxies associated with high-metallicity DLAs atz≈ 2 are dusty and therefore might feature low Lyαescape fractions. Our results indicate that complementary approaches—using Lyα, CO, Hα, and [Cii] 158μm emission—are necessary to identify the wide range of galaxy types associated withz≈ 2 DLAs.more » « less
-
Abstract We report a Karl G. Jansky Very Large Array search for redshifted CO(1–0) emission from three Hi-absorption-selected galaxies atz≈ 2, identified earlier in their CO(3–2) or CO(4–3) emission. We detect CO(1–0) emission from DLA B1228-113 atz≈ 2.1933 and DLA J0918+1636 atz≈ 2.5848; these are the first detections of CO(1–0) emission in high-zHi-selected galaxies. We obtain high molecular gas masses,Mmol≈ 1011× (αCO/4.36)M⊙, for the two objects with CO(1–0) detections, which are a factor of ≈1.5–2 lower than earlier estimates. We determine the excitation of the mid-JCO rotational levels relative to theJ= 1 level,rJ1, in Hi-selected galaxies for the first time, obtainingr31= 1.00 ± 0.20 andr41= 1.03 ± 0.23 for DLA J0918+1636, andr31= 0.86 ± 0.21 for DLA B1228-113. These values are consistent with thermal excitation of theJ= 3 andJ= 4 levels. The excitation of theJ= 3 level in the Hi-selected galaxies is similar to that seen in massive main-sequence and submillimeter galaxies atz≳2, but higher than that in main-sequence galaxies atz≈ 1.5; the higher excitation of the galaxies atz≳ 2 is likely to be due to their higher star formation rate (SFR) surface density. We use Hubble Space Telescope Wide Field Camera 3 imaging to detect the rest-frame near-ultraviolet (NUV) emission of DLA B1228-113, obtaining an NUV SFR of 4.44 ± 0.47M⊙yr−1, significantly lower than that obtained from the total infrared luminosity, indicating significant dust extinction in thez≈ 2.1933 galaxy.more » « less
-
Abstract We report a NOrthern Extended Millimeter Array (NOEMA) and Atacama Large Millimeter/submillimeter Array search for redshifted CO emission from the galaxies associated with seven high-metallicity ([M/H] ≥ −1.03) damped Lyαabsorbers (DLAs) atz≈ 1.64–2.51. Our observations yielded one new detection of CO(3–2) emission from a galaxy atz= 2.4604 using NOEMA, associated with thez= 2.4628 DLA toward QSO B0201+365. Including previous searches, our search results in detection rates of CO emission of % and %, respectively, in the fields of DLAs with [M/H] > −0.3 and [M/H] < −0.3. Further, the Hi–selected galaxies associated with five DLAs with [M/H] > −0.3 all have high molecular gas masses, ≳5 × 1010M⊙. This indicates that the highest-metallicity DLAs atz≈ 2 are associated with the most massive galaxies. The newly identifiedz≈ 2.4604 Hi–selected galaxy, DLA0201+365g, has an impact parameter of ≈7 kpc to the QSO sightline, and an implied molecular gas mass of (5.04 ± 0.78) × 1010× (αCO/4.36) × (r31/0.55)M⊙. Archival Hubble Space Telescope Wide Field and Planetary Camera 2 imaging covering the rest-frame near-ultraviolet (NUV) and far-ultraviolet (FUV) emission from this galaxy yield nondetections of rest-frame NUV and FUV emission, and a 5σupper limit of 2.3M⊙yr−1on the unobscured star formation rate (SFR). The low NUV-based SFR estimate, despite the very high molecular gas mass, indicates that DLA0201+365g either is a very dusty galaxy, or has a molecular gas depletion time that is around 2 orders of magnitude larger than that of star-forming galaxies at similar redshifts.more » « less
An official website of the United States government
