skip to main content


Title: Machine Learning Uncovers Aerosol Size Information From Chemistry and Meteorology to Quantify Potential Cloud‐Forming Particles
Abstract

Cloud condensation nuclei (CCN) are mediators of aerosol‐cloud interactions, which contribute to the largest uncertainty in climate change prediction. Here, we present a machine learning (ML)/artificial intelligence (AI) model that quantifies CCN from model‐simulated aerosol composition, atmospheric trace gas, and meteorological variables. Comprehensive multi‐campaign airborne measurements, covering varied physicochemical regimes in the troposphere, confirm the validity of and help probe the inner workings of this ML model: revealing for the first time that different ranges of atmospheric aerosol composition and mass correspond to distinct aerosol number size distributions. ML extracts this information, important for accurate quantification of CCN, additionally from both chemistry and meteorology. This can provide a physicochemically explainable, computationally efficient, robust ML pathway in global climate models that only resolve aerosol composition; potentially mitigating the uncertainty of effective radiative forcing due to aerosol‐cloud interactions (ERFaci) and improving confidence in assessment of anthropogenic contributions and climate change projections.

 
more » « less
Award ID(s):
1650786
NSF-PAR ID:
10375027
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  more » ;  ;  ;  ;  ;  ;  ;   « less
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
48
Issue:
21
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The effect of aerosols on the properties of clouds is a large source of uncertainty in predictions of weather and climate. These aerosol‐cloud interactions depend critically on the ability of aerosol particles to form cloud droplets. A challenge in modeling aerosol‐cloud interactions is the representation of interactions between turbulence and cloud microphysics. Turbulent mixing leads to small‐scale fluctuations in water vapor and temperature that are unresolved in large‐scale atmospheric models. To quantify the impact of turbulent fluctuations on cloud condensation nuclei (CCN) activation, we used a high‐resolution Large Eddy Simulation of a convective cloud chamber to drive particle‐based cloud microphysics simulations. We show small‐scale fluctuations strongly impact CCN activity. Once activated, the relatively long timescales of evaporation compared to fluctuations causes droplets to persist in subsaturated regions, which further increases droplet concentrations.

     
    more » « less
  2. Abstract. Over the eastern North Atlantic (ENA) ocean, a total of 20 non-precipitating single-layer marine boundary layer (MBL) stratus and stratocumuluscloud cases are selected to investigate the impacts of the environmental variables on the aerosol–cloud interaction (ACIr) using theground-based measurements from the Department of Energy Atmospheric Radiation Measurement (ARM) facility at the ENA site during 2016–2018. TheACIr represents the relative change in cloud droplet effective radius re with respect to the relative change in cloudcondensation nuclei (CCN) number concentration at 0.2 % supersaturation (NCCN,0.2 %) in the stratified water vaporenvironment. The ACIr values vary from −0.01 to 0.22 with increasing sub-cloud boundary layer precipitable water vapor (PWVBL)conditions, indicating that re is more sensitive to the CCN loading under sufficient water vapor supply, owing to the combined effectof enhanced condensational growth and coalescence processes associated with higher Nc and PWVBL. The principal componentanalysis shows that the most pronounced pattern during the selected cases is the co-variations in the MBL conditions characterized by the verticalcomponent of turbulence kinetic energy (TKEw), the decoupling index (Di), and PWVBL. The environmental effects onACIr emerge after the data are stratified into different TKEw regimes. The ACIr values, under both lowerand higher PWVBL conditions, more than double from the low-TKEw to high-TKEw regime. This can be explained bythe fact that stronger boundary layer turbulence maintains a well-mixed MBL, strengthening the connection between cloud microphysical properties andthe below-cloud CCN and moisture sources. With sufficient water vapor and low CCN loading, the active coalescence process broadens the cloud dropletsize spectra and consequently results in an enlargement of re. The enhanced activation of CCN and the cloud droplet condensationalgrowth induced by the higher below-cloud CCN loading can effectively decrease re, which jointly presents as the increasedACIr. This study examines the importance of environmental effects on the ACIr assessments and provides observational constraintsto future model evaluations of aerosol–cloud interactions. 
    more » « less
  3. null (Ed.)
    With their extensive coverage, marine low clouds greatly impact global climate. Presently, marine low clouds are poorly represented in global climate models, and the response of marine low clouds to changes in atmospheric greenhouse gases and aerosols remains the major source of uncertainty in climate simulations. The Eastern North Atlantic (ENA) is a region of persistent but diverse subtropical marine boundary layer clouds, whose albedo and precipitation are highly susceptible to perturbations in aerosol properties. In addition, the ENA is periodically impacted by continental aerosols, making it an excellent location to study the cloud condensation nuclei (CCN) budget in a remote marine region periodically perturbed by anthropogenic emissions, and to investigate the impacts of long-range transport of aerosols on remote marine clouds. The Aerosol and Cloud Experiments in Eastern North Atlantic (ACE-ENA) campaign was motivated by the need of comprehensive in-situ measurements for improving the understanding of marine boundary layer CCN budget, cloud and drizzle microphysics, and the impact of aerosol on marine low cloud and precipitation. The airborne deployments took place from June 21 to July 20, 2017 and January 15 to February 18, 2018 in the Azores. The flights were designed to maximize the synergy between in-situ airborne measurements and ongoing long-term observations at a ground site. Here we present measurements, observation strategy, meteorological conditions during the campaign, and preliminary findings. Finally, we discuss future analyses and modeling studies that improve the understanding and representation of marine boundary layer aerosols, clouds, precipitation, and the interactions among them. 
    more » « less
  4. Abstract

    An intimate knowledge of aerosol transport is essential in reducing the uncertainty of the impacts of aerosols on cloud development. Data sets from the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement platform in the Southern Great Plains region (ARM‐SGP) and the National Aeronautics and Space Administration (NASA) Modern‐Era Retrospective Analysis for Research and Applications, version 2 (MERRA‐2), showed seasonal increases in aerosol loading and total carbon concentration during the spring and summer months (2008–2016) which was attributed to fire activity and smoke transport within North America. The monthly mean MERRA‐2 surface carbonaceous aerosol mass concentration and ARM‐SGP total carbon products were strongly correlated (R = 0.82,p < 0.01) along with a moderate correlation with the ARM‐SGP cloud condensation nuclei (NCCN) product (0.5,p ~ 0.1). The monthly mean ARM‐SGP total carbon andNCCNproducts were strongly correlated (0.7,p ~ 0.01). An additional product denoting fire number and coverage taken from the National Interagency Fire Center (NIFC) showed a moderate correlation with the MERRA‐2 carbonaceous product (0.45,p < 0.01) during the 1981–2016 warm season months (March–September). With respect to meteorological conditions, the correlation between the NIFC fire product and MERRA‐2 850‐hPa isobaric height anomalies was lower (0.26,p ~ 0.13) due to the variability in the frequency, intensity, and number of fires in North America. An observed increase in the isobaric height anomaly during the past decade may lead to frequent synoptic ridging and drier conditions with more fires, thereby potentially impacting cloud/precipitation processes and decreasing air quality.

     
    more » « less
  5. Abstract

    The abundance and sources of ice‐nucleating particles, particles required for heterogeneous ice nucleation, are long‐standing sources of uncertainty in quantifying aerosol‐cloud interactions. In this study, we demonstrate near closure between immersion freezing ice‐nucleating particle number concentration (nINPs) observations andnINPscalculated from simulated sea spray aerosol and dust. The Community Atmospheric Model with constrained meteorology was used to simulate aerosol concentrations at the Mace Head Research Station (North Atlantic) and over the Southern Ocean to the south of Tasmania (Clouds, Aerosols, Precipitation, Radiation, and atmospherIc Composition Over the southeRN ocean campaign). Model‐predictednINPswere within a factor of 10 ofnINPsobserved with an off‐line ice spectrometer at Mace Head Research Station and Clouds, Aerosols, Precipitation, Radiation, and atmospherIc Composition Over the southeRN ocean campaign, for 93% and 69% of observations, respectively. Simulated vertical profiles ofnINPsreveal that transported dust may be critical tonINPsin remote regions and that sea spray aerosol may be the dominate contributor to primary ice nucleation in Southern Ocean low‐level mixed‐phase clouds.

     
    more » « less