The Arctic has undergone dramatic changes in sea ice cover and the hydrologic cycle, both of which strongly impact the freshwater storage in, and export from, the Arctic Ocean. Here we analyze Arctic freshwater storage and fluxes in seven climate models from the Coupled Model Intercomparison Project Phase 6 (CMIP6) and assess their performance over the historical period (1980–2000) and in two future emissions scenarios, SSP1‐2.6 and SSP5‐8.5. Similar to CMIP5, substantial differences exist between the models' Arctic mean states and the magnitude of their 21st century storage and flux changes. In the historical simulation, most models disagree with observations over 1980–2000. In both future scenarios, the models show an increase in liquid freshwater storage and a reduction in solid storage and fluxes through the major Arctic gateways (Bering Strait, Fram Strait, Davis Strait, and the Barents Sea Opening) that is typically larger for SSP5‐8.5 than SSP1‐2.6. The liquid fluxes are driven by both volume and salinity changes, with models exhibiting a change in sign (relative to 1980–2000) of the freshwater flux through the Barents Sea Opening by mid‐century, little change in the Bering Strait flux, and increased export from the remaining straits by the end of the 21st century. In the straits west of Greenland (Nares, Barrow, and Davis straits), the models disagree on the behavior of the liquid freshwater export in the early‐to‐mid 21st century due to differences in the magnitude and timing of a simulated decrease in the volume flux.
This content will become publicly available on January 1, 2024
- Award ID(s):
- 1902595
- NSF-PAR ID:
- 10430059
- Date Published:
- Journal Name:
- Ocean-Land-Atmosphere Research
- Volume:
- 2
- ISSN:
- 2771-0378
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract We review recent trends and projected future physical and chemical changes under climate change in transition zones between Arctic and Subarctic regions with a focus on the two major inflow gateways to the Arctic, one in the Pacific (i.e. Bering Sea, Bering Strait, and the Chukchi Sea) and the other in the Atlantic (i.e. Fram Strait and the Barents Sea). Sea-ice coverage in the gateways has been disappearing during the last few decades. Projected higher air and sea temperatures in these gateways in the future will further reduce sea ice, and cause its later formation and earlier retreat. An intensification of the hydrological cycle will result in less snow, more rain, and increased river runoff. Ocean temperatures are projected to increase, leading to higher heat fluxes through the gateways. Increased upwelling at the Arctic continental shelf is expected as sea ice retreats. The pH of the water will decline as more atmospheric CO2 is absorbed. Long-term surface nutrient levels in the gateways will likely decrease due to increased stratification and reduced vertical mixing. Some effects of these environmental changes on humans in Arctic coastal communities are also presented.
-
Doi, Hideyuki (Ed.)A large volume of freshwater is incorporated in the relatively fresh (salinity ~32–33) Pacific Ocean waters that are transported north through the Bering Strait relative to deep Atlantic salinity in the Arctic Ocean (salinity ~34.8). These freshened waters help maintain the halocline that separates cold Arctic surface waters from warmer Arctic Ocean waters at depth. The stable oxygen isotope composition of the Bering Sea contribution to the upper Arctic Ocean halocline was established as early as the late 1980’s as having a δ 18 O V - SMOW value of approximately -1.1‰. More recent data indicates a shift to an isotopic composition that is more depleted in 18 O (mean δ 18 O value ~-1.5‰). This shift is supported by a data synthesis of >1400 water samples (salinity from 32.5 to 33.5) from the northern Bering and Chukchi seas, from the years 1987–2020, which show significant year-to-year, seasonal and regional variability. This change in the oxygen isotope composition of water in the upper halocline is consistent with observations of added freshwater in the Canada Basin, and mooring-based estimates of increased freshwater inflows through Bering Strait. Here, we use this isotopic time-series as an independent means of estimating freshwater flux changes through the Bering Strait. We employed a simple end-member mixing model that requires that the volume of freshwater (including runoff and other meteoric water, but not sea ice melt) flowing through Bering Strait has increased by ~40% over the past two decades to account for a change in the isotopic composition of the 33.1 salinity water from a δ 18 O value of approximately -1.1‰ to a mean of -1.5‰. This freshwater flux change is comparable with independent published measurements made from mooring arrays in the Bering Strait (freshwater fluxes rising from 2000–2500 km 3 in 2001 to 3000–3500 km 3 in 2011).more » « less
-
Abstract The Bering Strait oceanic heat transport influences seasonal sea ice retreat and advance in the Chukchi Sea. Monitored since 1990, it depends on water temperature and factors controlling the volume transport, assumed to be local winds in the strait and an oceanic pressure difference between the Pacific and Arctic oceans (the “pressure head”). Recent work suggests that variability in the pressure head, especially during summer, relates to the strength of the zonal wind in the East Siberian Sea that raises or drops sea surface height in this area via Ekman transport. We confirm that westward winds in the East Siberian Sea relate to a broader central Arctic pattern of high sea level pressure and note that anticyclonic winds over the central Arctic Ocean also favor low September sea ice extent for the Arctic as a whole by promoting ice convergence and positive temperature anomalies. Month‐to‐month persistence in the volume transport and atmospheric circulation patterns is low, but the period 1980–2017 had a significant summertime (June–August) trend toward higher sea level pressure over the central Arctic Ocean, favoring increased transports. Some recent large heat transports are associated with high water temperatures, consistent with persistence of open water in the Chukchi Sea into winter and early ice retreat in spring. The highest heat transport recorded, October 2016, resulted from high water temperatures and ideal wind conditions yielding a record‐high volume transport. November and December 2005, the only months with southward volume (and thus heat) transports, were associated with southward winds in the strait.
-
Abstract. The Arctic Mediterranean (AM) is the collective name forthe Arctic Ocean, the Nordic Seas, and their adjacent shelf seas. Water enters into thisregion through the Bering Strait (Pacific inflow) and through the passages across theGreenland–Scotland Ridge (Atlantic inflow) and is modified within the AM. The modifiedwaters leave the AM in several flow branches which are grouped into two differentcategories: (1) overflow of dense water through the deep passages across theGreenland–Scotland Ridge, and (2) outflow of light water – here termed surface outflow– on both sides of Greenland. These exchanges transport heat and salt into and out ofthe AM and are important for conditions in the AM. They are also part of the global oceancirculation and climate system. Attempts to quantify the transports by various methodshave been made for many years, but only recently the observational coverage has becomesufficiently complete to allow an integrated assessment of the AM exchanges based solelyon observations. In this study, we focus on the transport of water and have collecteddata on volume transport for as many AM-exchange branches as possible between 1993 and2015. The total AM import (oceanic inflows plusfreshwater) is found to be 9.1 Sv (sverdrup,1 Sv =106 m3 s−1) with an estimated uncertainty of 0.7 Sv and hasthe amplitude of the seasonal variation close to 1 Sv and maximum import in October.Roughly one-third of the imported water leaves the AM as surface outflow with theremaining two-thirds leaving as overflow. The overflow water is mainly produced frommodified Atlantic inflow and around 70 % of the total Atlantic inflow is convertedinto overflow, indicating a strong coupling between these two exchanges. The surfaceoutflow is fed from the Pacific inflow and freshwater (runoff and precipitation), but isstill approximately two-thirds of modified Atlantic water. For the inflowbranches and the two main overflow branches (Denmark Strait and Faroe Bank Channel),systematic monitoring of volume transport has been established since the mid-1990s, andthis enables us to estimate trends for the AM exchanges as a whole. At the 95 %confidence level, only the inflow of Pacific water through the Bering Strait showed astatistically significant trend, which was positive. Both the total AM inflow and thecombined transport of the two main overflow branches also showed trends consistent withstrengthening, but they were not statistically significant. They do suggest, however,that any significant weakening of these flows during the last two decades is unlikely andthe overall message is that the AM exchanges remained remarkably stable in the periodfrom the mid-1990s to the mid-2010s. The overflows are the densest source water for thedeep limb of the North Atlantic part of the meridional overturning circulation (AMOC),and this conclusion argues that the reported weakening of the AMOC was not due tooverflow weakening or reduced overturning in the AM. Although the combined data set hasmade it possible to establish a consistent budget for the AM exchanges, the observationalcoverage for some of the branches is limited, which introduces considerable uncertainty.This lack of coverage is especially extreme for the surface outflow through the DenmarkStrait, the overflow across the Iceland–Faroe Ridge, and the inflow over the Scottishshelf. We recommend that more effort is put into observing these flows as well asmaintaining the monitoring systems established for the other exchange branches.