Abstract The Millstone Hill incoherent scatter (IS) radar is used to measure spectra close to perpendicular to the Earth's magnetic field, and the data are fit to three different forward models to estimate ionospheric temperatures. IS spectra measured close to perpendicular to the magnetic field are heavily influenced by Coulomb collisions, and the temperature estimates are sensitive to the collision operator used in the forward model. The standard theoretical model for IS radar spectra treats Coulomb collisions as a velocity independent Brownian motion process. This gives estimates ofTe/Ti < 1 when fitting the measured spectra for aspect angles up to 3.6°, which is a physically unrealistic result. The numerical forward model from Milla and Kudeki (2011,https://doi.org/10.1109/TGRS.2010.2057253) incorporates single‐particle simulations of velocity‐dependent Coulomb collisions into a linear framework, and when applied to the Millstone data, it predicts the sameTe/Tiratios as the Brownian theory. The new approach is a nonlinear particle‐in‐cell (PIC) code that includes velocity‐dependent Coulomb collisions which produce significantly more collisional and nonlinear Landau damping of the measured ion‐acoustic wave than the other forward models. When applied to the radar data, the increased damping in the PIC simulations will result in more physically realistic estimates ofTe/Ti. This new approach has the greatest impact for the largest measured ionospheric densities and the lowest radar frequencies. The new approach should enable IS radars to obtain accurate measurements of plasma temperatures at times and locations where they currently cannot. 
                        more » 
                        « less   
                    
                            
                            Nonlinear Effects of Electron‐Electron Collisions on ISR Temperature Measurements
                        
                    
    
            Abstract Incoherent scatter radars (ISR) estimate the electron and ion temperatures in the ionosphere by fitting measured spectra of ion‐acoustic waves to forward models. For radars looking at aspect angles within 5° off perpendicular to the Earth's magnetic field, the magnetic field constrains electron movement and Coulomb collisions add an additional source of damping that narrows the spectra. Fitting the collisionally narrowed spectra to collisionless forward models leads to errors or underestimates of the plasma temperatures. This paper presents the first fully kinetic particle‐in‐cell (PIC) simulations of ISR spectra with collisional damping by velocity‐dependent electron‐electron and electron‐ion collisions. For aspect angles between 0.5° and 2° off perpendicular, the damping effects of electron‐ion and electron‐electron collisions in the PIC simulations are the same and the resulting spectra are narrower than what current theories and models predict. For aspect angles larger than 3° away from perpendicular, the simulations with electron‐ion collisions match collisionless ISR theory well, but spectra with electron‐electron collisions are narrower than theory predicts at aspect angles as large as 5° away from perpendicular. At aspect angles less than 5° the PIC simulations produce narrower spectra than previous simulations using single‐particle displacement statistics that include both electron‐ion and electron‐electron collisions. The narrowing of spectra by electron‐electron collisions in the PIC code between 3° and 5° away from perpendicular is currently neglected when fitting measured spectra from the Jicamarca and Millstone Hill radars, leading to underestimates of electron temperatures by as much as 25% at small aspect angles. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1755350
- PAR ID:
- 10375191
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Space Physics
- Volume:
- 124
- Issue:
- 7
- ISSN:
- 2169-9380
- Page Range / eLocation ID:
- p. 6313-6329
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract The modeling of gamma-ray burst afterglow emission bears witness to strong electron heating in the precursor of Weibel-mediated, relativistic collisionless shock waves propagating in unmagnetized electron–ion plasmas. In this Letter, we propose a theoretical model, which describes electron heating via a Joule-like process caused by pitch-angle scattering in the decelerating, self-induced microturbulence and the coherent charge-separation field induced by the difference in inertia between electrons and ions. The emergence of this electric field across the precursor of electron–ion shocks is confirmed by large-scale particle-in-cell (PIC) simulations. Integrating the model using a Monte Carlo-Poisson method, we compare the main observables to the PIC simulations to conclude that the above mechanism can indeed account for the bulk of electron heating.more » « less
- 
            Abstract Collisionless low-Mach-number shocks are abundant in astrophysical and space plasma environments, exhibiting complex wave activity and wave–particle interactions. In this paper, we present 2D Particle-in-Cell (PIC) simulations of quasi-perpendicular nonrelativistic (vsh≈ (5500–22000) km s−1) low-Mach-number shocks, with a specific focus on studying electrostatic waves in the shock ramp and precursor regions. In these shocks, an ion-scale oblique whistler wave creates a configuration with two hot counterstreaming electron beams, which drive unstable electron acoustic waves (EAWs) that can turn into electrostatic solitary waves (ESWs) at the late stage of their evolution. By conducting simulations with periodic boundaries, we show that the EAW properties agree with linear dispersion analysis. The characteristics of ESWs in shock simulations, including their wavelength and amplitude, depend on the shock velocity. When extrapolated to shocks with realistic velocities (vsh≈ 300 km s−1), the ESW wavelength is reduced to one-tenth of the electron skin depth and the ESW amplitude is anticipated to surpass that of the quasi-static electric field by more than a factor of 100. These theoretical predictions may explain a discrepancy, between PIC and satellite measurements, in the relative amplitude of high- and low-frequency electric field fluctuations.more » « less
- 
            ABSTRACT The solar wind plasma is characterized by unequal effective kinetic temperatures defined in perpendicular and parallel directions with respect to the ambient magnetic field. For electrons, the excessive perpendicular temperature anisotropy leads to quasi-parallel electromagnetic electron cyclotron (or whistler) instability and aperiodic electron-mirror instability with oblique wave vectors. The present paper carries out a direct side-by-side comparison of quasi-linear (QL) theory and particle-in-cell (PIC) simulation of combined mirror and cyclotron instabilities acting upon the initially anisotropic electron temperatures, and find that the QL theory satisfactorily encapsulates the non-linear aspect of the combined instability effects. However, a discrepancy between the present study and a previous PIC simulation result is also found, which points to the need for further investigation to resolve such an issue.more » « less
- 
            The study of collisionless shocks and their role in cosmic ray acceleration has gained importance through observations and simulations, driving interest in reproducing these conditions in laboratory experiments using high-power lasers. In this work, we examine the role of three-dimensional (3D) effects in ion acceleration in quasi-perpendicular shocks under laboratory-relevant conditions. Using hybrid particle-in-cell (PIC) simulations (kinetic ions and fluid electrons), we explore how the Alfvénic and sonic Mach numbers, along with plasma beta, influence ion energization, unlocked only in 3D, and establish scaling criteria for when conducting 3D simulations is necessary. Our results show that efficient ion acceleration requires Alfvénic Mach numbers ≥25 and sonic Mach numbers ≥13, with plasma-β≤5. We theoretically found that, while two-dimensional (2D) simulations suffice for current laboratory-accessible shock conditions, 3D effects become crucial for shock velocities exceeding 1000 km/s and experiments sustaining the shock for at least 10 ns. We surveyed previous laboratory experiments on collisionless shocks and found that 3D effects are unimportant under those conditions, implying that one-dimensional and 2D simulations should be enough to model the accelerated ion spectra. However, we do find that the same experiments are realistically close to accessing the regime relevant to 3D effects, an exciting prospect for future laboratory efforts. We propose modifications to past experimental configurations to optimize and control 3D effects on ion acceleration. These proposed experiments could be used to benchmark plasma astrophysics kinetic codes and/or employed as controllable sources of energetic particles.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
