The Magnetospheric Multiscale (MMS) mission has given us unprecedented access to high cadence particle and field data of magnetic reconnection at Earth's magnetopause. MMS first passed very near an X‐line on 16 October 2015, the Burch event, and has since observed multiple X‐line crossings. Subsequent 3‐D particle‐in‐cell (PIC) modeling efforts of and comparison with the Burch event have revealed a host of novel physical insights concerning magnetic reconnection, turbulence‐induced particle mixing, and secondary instabilities. In this study, we employ the
 Award ID(s):
 1804048
 NSFPAR ID:
 10402210
 Date Published:
 Journal Name:
 The Astrophysical Journal Letters
 Volume:
 930
 Issue:
 1
 ISSN:
 20418205
 Page Range / eLocation ID:
 L8
 Format(s):
 Medium: X
 Sponsoring Org:
 National Science Foundation
More Like this

Abstract Gkeyll simulation framework to study the Burch event with different classes of extended, multifluid magnetohydrodynamics (MHD), including models that incorporate important kinetic effects, such as the electron pressure tensor, with physics‐based closure relations designed to capture linear Landau damping. Such fluid modeling approaches are able to capture different levels of kinetic physics in global simulations and are generally less costly than fully kinetic PIC. We focus on the additional physics one can capture with increasing levels of fluid closure refinement via comparison with MMS data and existing PIC simulations. In particular, we find that the ten‐moment model well captures the agyrotropic structure of the pressure tensor in the vicinity of the X‐line and the magnitude of anisotropic electron heating observed in MMS and PIC simulations. However, the ten‐moment model is found to have difficulty resolving the lower hybrid drift instability, which plays a fundamental role in heating and mixing electrons in the current layer. 
Abstract We measure the thermal electron energization in 1D and 2D particleincell simulations of quasiperpendicular, lowbeta (
β _{p}= 0.25) collisionless ion–electron shocks with mass ratiom _{i}/m _{e}= 200, fast Mach number –4, and upstream magnetic field angle ${\mathcal{M}}_{\mathrm{ms}}=1$θ _{Bn}= 55°–85° from the shock normal . It is known that shock electron heating is described by an ambipolar, $\stackrel{\u02c6}{\mathit{n}}$ parallel electric potential jump, ΔB ϕ _{∥}, that scales roughly linearly with the electron temperature jump. Our simulations have –0.2 in units of the preshock ions’ bulk kinetic energy, in agreement with prior measurements and simulations. Different ways to measure $\mathrm{\Delta}{\varphi}_{\parallel}/(0.5{m}_{\mathrm{i}}{{u}_{\mathrm{sh}}}^{2})\sim 0.1$ϕ _{∥}, including the use of de Hoffmann–Teller frame fields, agree to tensofpercent accuracy. Neglecting offdiagonal electron pressure tensor terms can lead to a systematic underestimate ofϕ _{∥}in our lowβ _{p}shocks. We further focus on twoθ _{Bn}= 65° shocks: a ( ${\mathcal{M}}_{\mathrm{s}}\phantom{\rule{0.25em}{0ex}}=\phantom{\rule{0.25em}{0ex}}4$ ) case with a long, 30 ${\mathcal{M}}_{\mathrm{A}}\phantom{\rule{0.25em}{0ex}}=\phantom{\rule{0.25em}{0ex}}1.8$d _{i}precursor of whistler waves along , and a $\stackrel{\u02c6}{\mathit{n}}$ ( ${\mathcal{M}}_{\mathrm{s}}\phantom{\rule{0.25em}{0ex}}=\phantom{\rule{0.25em}{0ex}}7$ ) case with a shorter, 5 ${\mathcal{M}}_{\mathrm{A}}\phantom{\rule{0.25em}{0ex}}=\phantom{\rule{0.25em}{0ex}}3.2$d _{i}precursor of whistlers oblique to both and $\stackrel{\u02c6}{\mathit{n}}$ ;B d _{i}is the ion skin depth. Within the precursors,ϕ _{∥}has a secular rise toward the shock along multiple whistler wavelengths and also has localized spikes within magnetic troughs. In a 1D simulation of the , ${\mathcal{M}}_{\mathrm{s}}\phantom{\rule{0.25em}{0ex}}=\phantom{\rule{0.25em}{0ex}}4$θ _{Bn}= 65° case,ϕ _{∥}shows a weak dependence on the electron plasmatocyclotron frequency ratioω _{pe}/Ω_{ce}, andϕ _{∥}decreases by a factor of 2 asm _{i}/m _{e}is raised to the true proton–electron value of 1836. 
ABSTRACT Ion beamdriven instabilities in a collisionless space plasma with low β, i.e. low plasma and magnetic pressure ratio, are investigated using particleincell (PIC) simulations. Specifically, the effects of different ion drift velocities on the development of Buneman and resonant electromagnetic (EM) righthanded (RH) ion beam instabilities are studied. Our simulations reveal that both instabilities can be driven when the ion beam drift exceeds the theoretical thresholds. The Buneman instability, which is weakly triggered initially, dissipates only a small fraction of the kinetic energy of the ion beam while causing significant electron heating, owing to the small electronion mass ratio. However, we find that the ion beamdriven Buneman instability is quenched effectively by the resonant EM RH ion beam instability. Instead, the resonant EM RH ion beam instability dominates when the ion drift velocity is larger than the Alfvén speed, leading to the generation of RH Alfvén waves and RH whistler waves. We find that the intensity of Alfvén waves decreases with decrease of ion beam drift velocity, while the intensity of whistler waves increases. Our results provide new insights into the complex interplay between ion beams and plasma instabilities in low β collisionless space plasmas.

Using 2.5 dimensional kinetic particleincell (PIC) simulations, we simulate reconnection conditions appropriate for the magnetosheath and solar wind, i.e., plasma beta (ratio of gas pressure to magnetic pressure) greater than 1 and low magnetic shear (strong guide field). Changing the simulation domain size, we find that the ion response varies greatly. For reconnecting regions with scales comparable to the ion inertial length, the ions do not respond to the reconnection dynamics leading to “electrononly” reconnection with very large quasisteady reconnection rates. Note that in these simulations the ion Larmor radius is comparable to the ion inertial length. The transition to more traditional “ioncoupled” reconnection is gradual as the reconnection domain size increases, with the ions becoming frozenin in the exhaust when the magnetic island width in the normal direction reaches many ion inertial lengths. During this transition, the quasisteady reconnection rate decreases until the ions are fully coupled, ultimately reaching an asymptotic value. The scaling of the ion outflow velocity with exhaust width during this electrononly to ioncoupled transition is found to be consistent with a theoretical model of a newly reconnected field line. In order to have a fully frozenin ion exhaust with ion flows comparable to the reconnection Alfven speed, an exhaust width of at least several ion inertial lengths is needed. In turbulent systems with reconnection occurring between magnetic bubbles associated with fluctuations, using geometric arguments we estimate that fully ioncoupled reconnection requires magnetic bubble length scales of at least several tens of ion inertial lengths.more » « less

null (Ed.)Inertial confinement fusion approaches involve the creation of highenergydensity states through compression. High gain scenarios may be enabled by the beneficial heating from fast electrons produced with an intense laser and by energy containment with a highstrength magnetic field. Here, we report experimental measurements from a configuration integrating a magnetized, imploded cylindrical plasma and intense laserdriven electrons as well as multistage simulations that show fast electrons transport pathways at different times during the implosion and quantify their energy deposition contribution. The experiment consisted of a CH foam cylinder, inside an external coaxial magnetic field of 5 T, that was imploded using 36 OMEGA laser beams. Twodimensional (2D) hydrodynamic modelling predicts the CH density reaches 9.0 g cm − 3 , the temperature reaches 920 eV and the external Bfield is amplified at maximum compression to 580 T. At predetermined times during the compression, the intense OMEGA EP laser irradiated one end of the cylinder to accelerate relativistic electrons into the dense imploded plasma providing additional heating. The relativistic electron beam generation was simulated using a 2D particleincell (PIC) code. Finally, threedimensional hybridPIC simulations calculated the electron propagation and energy deposition inside the target and revealed the roles the compressed and selfgenerated Bfields play in transport. During a time window before the maximum compression time, the selfgenerated Bfield on the compression front confines the injected electrons inside the target, increasing the temperature through Joule heating. For a stronger Bfield seed of 20 T, the electrons are predicted to be guided into the compressed target and provide additional collisional heating. This article is part of a discussion meeting issue ‘Prospects for high gain inertial fusion energy (part 2)’.more » « less