skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fabrication of Arrays of Topological Solitons in Patterned Chiral Liquid Crystals for Real‐Time Observation of Morphogenesis
Abstract Topological solitons have knotted continuous field configurations embedded in a uniform background, and occur in cosmology, biology, and electromagnetism. However, real‐time observation of their morphogenesis and dynamics is still challenging because their size and timescale are enormously large or tiny. Liquid crystal (LC) structures are promising candidates for a model‐system to study the morphogenesis of topological solitons, enabling direct visualization due to the proper size and timescale. Here, a new way is found to rationalize the real‐time observation of the generation and transformation of topological solitons using cholesteric LCs confined in patterned substrates. The experimental demonstration shows the topologically protected structures arise via the transformation of topological defects. Numerical modeling based on minimization of free energy closely reconstructs the experimental findings. The fundamental insights obtained from the direct observations pose new theoretical challenges in understanding the morphogenesis of different types of topological solitons within a broad range of scales.  more » « less
Award ID(s):
1810513
PAR ID:
10375204
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
34
Issue:
29
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this work, we show that collisions of one type of nonlinear wave can lead to generation of a different kind of nonlinear wave. Specifically, we demonstrate the formation of topological solitons (or transition waves) via collisions of elastic vector solitons, another type of nonlinear wave, in a multistable mechanical system with coupling between translational and rotational degrees of freedom. We experimentally observe the nucleation of a phase transformation arising from colliding waves, and we numerically investigate head-on and overtaking collisions of solitary waves with vectorial properties (i.e., elastic vector solitons). Unlike KdV-type solitons, which maintain their shape despite collisions, our system shows that collisions of two vector solitons can cause nucleation of a new phase via annihilation of the vector solitons, triggering the propagation of transition waves. The propagation of these depends both on the amount of energy carried by the vector solitons and on their respective rotational directions. The observation of the initiation of transition waves with collisions of vector solitons in multistable mechanical systems is an unexplored area of fundamental nonlinear wave interactions and could also prove useful in applications involving reconfigurable structures. 
    more » « less
  2. Topological solitons are non-singular but topologically nontrivial structures in fields, which have fundamental significance across various areas of physics, similar to singular defects. Production and observation of singular and solitonic topological structures remain a complex undertaking in most branches of science – but in soft matter physics, they can be realized within the director field of a liquid crystal. Additionally, it has been shown that confining liquid crystals to spherical shells using microfluidics resulted in a versatile experimental platform for the dynamical study of topological transformations between director configurations. In this work, we demonstrate the triggered formation of topological solitons, cholesteric fingers, singular defect lines and related structures in liquid crystal shells. We show that to accommodate these objects, shells must possess a Janus nature, featuring both twisted and untwisted domains. We report the formation of linear and axisymmetric objects, which we identify as cholesteric fingers and skyrmions or elementary torons, respectively. We then take advantage of the sensitivity of shells to numerous external stimuli to induce dynamical transitions between various types of structures, allowing for a richer phenomenology than traditional liquid crystal cells with solid flat walls. Using gradually more refined experimental techniques, we induce the targeted transformation of cholesteric twist walls and fingers into skyrmions and elementary torons. We capture the different stages of these director transformations using numerical simulations. Finally, we uncover an experimental mechanism to nucleate arrays of axisymmetric structures on shells, thereby creating a system of potential interest for tackling crystallography studies on curved spaces. 
    more » « less
  3. Abstract Non-topological solitons are localized classical field configurations stabilized by a Noether charge. Friedberg, Lee, and Sirlin proposed a simple renormalizable soliton model in their seminal 1976 paper, consisting of a complex scalar field that carries the Noether charge and a real-scalar mediator. We revisit this model, point out commonalities and differences withQ-ball solitons, and provide analytic approximations to the underlying differential equations. 
    more » « less
  4. Morphogenesis of living systems involves topological shape transformations which are highly unusual in the inanimate world. Here, we demonstrate that a droplet of a nematic liquid crystal changes its equilibrium shape from a simply connected tactoid, which is topologically equivalent to a sphere, to a torus, which is not simply connected. The topological shape transformation is caused by the interplay of nematic elastic constants, which facilitates splay and bend of molecular orientations in tactoids but hinders splay in the toroids. The elastic anisotropy mechanism might be helpful in understanding topology transformations in morphogenesis and paves the way to control and transform shapes of droplets of liquid crystals and related soft materials. 
    more » « less
  5. We experimentally observe the formation of dissipative cavity solitons at the boundaries of a topological lattice. Our work reveals new opportunities to study both nonlinear topological photonics and dissipative cavity solitons in coupled resonator arrays. 
    more » « less