Abstract Q-balls are non-topological solitons arising in scalar field theories. Solutions for rotating Q-balls (and the related boson stars) have been shown to exist when the angular momentum is equal to an integer multiple of the Q-ball chargeQ. Here we consider the possibility of classically long-lived metastable rotating Q-balls with small angular momentum, even for large charge, for all scalar theories that support non-rotating Q-balls. This is relevant for rotating extensions of Q-balls and related solitons such as boson stars as it impacts their cosmological phenomenology. arXiv:2302.11589
more »
« less
Revisiting the Friedberg–Lee–Sirlin soliton model
Abstract Non-topological solitons are localized classical field configurations stabilized by a Noether charge. Friedberg, Lee, and Sirlin proposed a simple renormalizable soliton model in their seminal 1976 paper, consisting of a complex scalar field that carries the Noether charge and a real-scalar mediator. We revisit this model, point out commonalities and differences withQ-ball solitons, and provide analytic approximations to the underlying differential equations.
more »
« less
- Award ID(s):
- 2210428
- PAR ID:
- 10424898
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- The European Physical Journal C
- Volume:
- 83
- Issue:
- 6
- ISSN:
- 1434-6052
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Complex scalars inU(1)-symmetric potentials can form stable Q-balls, non-topological solitons that correspond to spherical bound-state solutions. If theU(1) charge of the Q-ball is large enough, it can support a tower of unstable radial excitations with increasing energy. Previous analyses of these radial excitations were confined to fixed parameters, leading to excited states with different chargesQ. In this work, we provide the first characterization of the radial excitations of solitons for fixed charge, providing the physical spectrum for such objects. We also show how to approximately describe these excited states analytically and predict their global properties such as radius, energy, and charge. This enables a complete characterization of the radial spectrum. We also comment on the decay channels of these excited states.more » « less
-
The vacuum polarization energy is the leading quantum correction to the classical energy of a soliton. We study this energy for two-component solitons in one space dimension as a function of the soliton’s topological charge. We find that both the classical and the vacuum polarization energies are linear functions of the topological charge with a small offset. Because the combination of the classical and quantum offsets determines the binding energies, either all higher charge solitons are energetically bound or they are all unbound, depending on model parameters. This linearity persists even when the field configurations are very different from those of isolated solitons and would not be apparent from an analysis of their bound state spectra alone. Published by the American Physical Society2025more » « less
-
Abstract In this paper, we develop the Riemann–Hilbert approach to the inverse scattering transform (IST) for the complex coupled short‐pulse equation on the line with zero boundary conditions at space infinity, which is a generalization of recent work on the scalar real short‐pulse equation (SPE) and complex short‐pulse equation (cSPE). As a byproduct of the IST, soliton solutions are also obtained. As is often the case, the zoology of soliton solutions for the coupled system is richer than in the scalar case, and it includes both fundamental solitons (the natural, vector generalization of the scalar case), and fundamental breathers (a superposition of orthogonally polarized fundamental solitons, with the same amplitude and velocity but having different carrier frequencies), as well as composite breathers, which still correspond to a minimal set of discrete eigenvalues but cannot be reduced to a simple superposition of fundamental solitons. Moreover, it is found that the same constraint on the discrete eigenvalues which leads to regular, smooth one‐soliton solutions in the complex SPE, also holds in the coupled case, for both a single fundamental soliton and a single fundamental breather, but not, in general, in the case of a composite breather.more » « less
-
A<sc>bstract</sc> A search for pair-produced scalar and vector leptoquarks decaying into quarks and leptons of different generations is presented. It uses the full LHC Run 2 (2015–2018) data set of 139 fb−1collected with the ATLAS detector in proton–proton collisions at a centre-of-mass energy of$$ \sqrt{s} $$ = 13 TeV. Scalar leptoquarks with charge −(1/3)eas well as scalar and vector leptoquarks with charge +(2/3)eare considered. All possible decays of the pair-produced leptoquarks into quarks of the third generation (t, b) and charged or neutral leptons of the first or second generation (e, μ, ν) with exactly one electron or muon in the final state are investigated. No significant deviations from the Standard Model expectation are observed. Upper limits on the production cross-section are provided for eight models as a function of the leptoquark mass and the branching ratio of the leptoquark into the charged or neutral lepton. In addition, lower limits on the leptoquark masses are derived for all models across a range of branching ratios. Two of these models have the goal of providing an explanation for the recentB-anomalies. In both models, a vector leptoquark decays into charged and neutral leptons of the second generation with a similar branching fraction. Lower limits of 1980 GeV and 1710 GeV are set on the leptoquark mass for these two models.more » « less