Peatlands, which account for approximately 15% of land surface across the arctic and boreal regions of the globe, are experiencing a range of ecological impacts as a result of climate change. Factors that include altered hydrology resulting from drought and permafrost thaw, rising temperatures, and elevated levels of atmospheric carbon dioxide have been shown to cause plant community compositional changes. Shifts in plant composition affect the productivity, species diversity, and carbon cycling of peatlands. We used hyperspectral remote sensing to characterize the response of boreal peatland plant composition and species diversity to warming, hydrologic change, and elevated CO2. Hyperspectral remote sensing techniques offer the ability to complete landscape-scale analyses of ecological responses to climate disturbance when paired with plot-level measurements that link ecosystem biophysical properties with spectral reflectance signatures. Working within two large ecosystem manipulation experiments, we examined climate controls on composition and diversity in two types of common boreal peatlands: a nutrient rich fen located at the Alaska Peatland Experiment (APEX) in central Alaska, and an ombrotrophic bog located in northern Minnesota at the Spruce and Peatland Responses Under Changing Environments (SPRUCE) experiment. We found a strong effect of plant functional cover on spectral reflectance characteristics. We also found a positive relationship between species diversity and spectral variation at the APEX field site, which is consistent with other recently published findings. Based on the results of our field study, we performed a supervised land cover classification analysis on an aerial hyperspectral dataset to map peatland plant functional types (PFTs) across an area encompassing a range of different plant communities. Our results underscore recent advances in the application of remote sensing measurements to ecological research, particularly in far northern ecosystems.
more »
« less
Optical characterization of marine phytoplankton assemblages within surface waters of the western Arctic Ocean
Abstract An extensive data set of measurements within the Chukchi and Beaufort Seas is used to characterize the optical properties of seawater associated with different phytoplankton communities. Hierarchical cluster analysis of diagnostic pigment concentrations partitioned stations into four distinct surface phytoplankton communities based on taxonomic composition and average cell size. Concurrent optical measurements of spectral absorption and backscattering coefficients and remote‐sensing reflectance were used to characterize the magnitudes and spectral shapes of seawater optical properties associated with each phytoplankton assemblage. The results demonstrate measurable differences among communities in the average spectral shapes of the phytoplankton absorption coefficient. Similar or smaller differences were also observed in the spectral shapes of nonphytoplankton absorption coefficients and the particulate backscattering coefficient. Phytoplankton on average, however, contributed only 25% or less to the total absorption coefficient of seawater. Our analyses indicate that the interplay between the magnitudes and relative contributions of all optically significant constituents generally dampens any influence of varying phytoplankton absorption spectral shapes on the total absorption coefficient, yet there is still a marked discrimination observed in the spectral shape of the ratio of the total backscattering to total absorption coefficient and remote‐sensing reflectance among the phytoplankton assemblages. These spectral variations arise mainly from differences in the bio‐optical environment in which specific communities were found, as opposed to differences in the spectral shapes of phytoplankton optical properties per se. These results suggest potential approaches for the development of algorithms to assess phytoplankton community composition from measurements of seawater optical properties in western Arctic waters.
more »
« less
- Award ID(s):
- 1822021
- PAR ID:
- 10375221
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Limnology and Oceanography
- Volume:
- 64
- Issue:
- 6
- ISSN:
- 0024-3590
- Format(s):
- Medium: X Size: p. 2478-2496
- Size(s):
- p. 2478-2496
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Xia, Junshi; Kishcha, Pavel; Roberts, Dar; VanDeventer, Heidi; Niculescu, Simona (Ed.)Water colour remote sensing is a valuable tool for assessing bio-optical and biogeochemical parameters across the vast extent of the Amazon River Continuum (ARC). However, accurate retrieval depends on selecting the best atmospheric correction (AC). Four AC processors (Acolite, Polymer, C2RCC, OC-SMART) were evaluated against in situ remote sensing reflectance (Rrs) measurements. K-means classification identified four optical water types (OWTs) that are affected by the ARC. Two OWTs showed seasonal differences in the Lower Amazon River, influenced by the increase in suspended sediment concentration with river discharge. The other OWTs in the Amazon River Plume are dominated by phytoplankton or by a mixture of optically significant constituents. The Quality Water Index Polynomial method used to assess the quality of in situ and orbital Rrs had a high failure rate when the Apparent Visible Wavelength was >580 nm for in situ Rrs. OC-SMART Rrs products showed better spectral quality compared to Rrs derived from other AC processors evaluated in this study. These results improve our understanding of remotely sensing very turbid waters, such as those in the Amazon River Continuum.more » « less
-
Abstract The development of algorithms for remote sensing of water quality (RSWQ) requires a large amount ofin situdata to account for the bio-geo-optical diversity of inland and coastal waters. The GLObal Reflectance community dataset for Imaging and optical sensing of Aquatic environments (GLORIA) includes 7,572 curated hyperspectral remote sensing reflectance measurements at 1 nm intervals within the 350 to 900 nm wavelength range. In addition, at least one co-located water quality measurement of chlorophylla, total suspended solids, absorption by dissolved substances, and Secchi depth, is provided. The data were contributed by researchers affiliated with 59 institutions worldwide and come from 450 different water bodies, making GLORIA thede-factostate of knowledge ofin situcoastal and inland aquatic optical diversity. Each measurement is documented with comprehensive methodological details, allowing users to evaluate fitness-for-purpose, and providing a reference for practitioners planning similar measurements. We provide open and free access to this dataset with the goal of enabling scientific and technological advancement towards operational regional and global RSWQ monitoring.more » « less
-
As a key component of inherent optical properties (IOPs) in ocean color remote sensing, phytoplankton absorption coefficient (aphy), especially in hyperspectral, greatly enhances our understanding of phytoplankton community composition (PCC). The recent launches of NASA’s hyperspectral missions, such as EMIT and PACE, have generated an urgent need for hyperspectral algorithms for studying phytoplankton. Retrieving aphy from ocean color remote sensing in coastal waters has been extremely challenging due to complex optical properties. Traditional methods often fail under these circumstances, while improved machine-learning approaches are hindered by data scarcity, heterogeneity, and noise from data collection. In response, this study introduces a novel machine learning framework for hyperspectral retrievals of aphy based on the mixture-of-experts (MOEs), named PhA-MOE. Various preprocessing methods for hyperspectral training data are explored, with the combination of robust and logarithmic scalers identified as optimal. The proposed PhA-MOE for aphy prediction is tailored to both past and current hyperspectral missions, including EMIT and PACE. Extensive experiments reveal the importance of data preprocessing and improved performance of PhA-MOE in estimating aphy as well as in handling data heterogeneity. Notably, this study marks the first application of a machine learning–based MOE model to real PACE-OCI hyperspectral imagery, validated using match-up field data. This application enables the exploration of spatiotemporal variations in aphy within an optically complex estuarine environment.more » « less
-
Optical water types (OWTs) were identified from an in situ dataset of concomitant biogeochemical and optical parameters acquired in the Amazon River and its tributaries, in the Lower Amazon region, at different hydrological conditions from 2014 to 2017. A seasonal bio-optical characterization was performed. The k-means classification was applied to the in situ normalized reflectance spectra (rn(λ)), allowing the identification of four OWTs. An optical index method was also applied to the rn(λ) defining the thresholds of the OWTs. Next, level-3 Sentinel-3 Ocean and Land Color Instrument images representative of the seasonal discharge conditions were classified using the identified in situ OWTs as reference. The differences between Amazon River and clearwater tributary OWTs were dependent on the hydrological dynamics of the Amazon River, also showing a strong seasonal variability. Each OWT was associated with a specific bio-optical and biogeochemical environment assessed from the corresponding absorption coefficient values of colored dissolved organic matter (aCDOM) and particulate matter (ap), chlorophyll-a and suspended particulate matter (SPM) concentrations, and aCDOM/ap ratio. The rising water season presented a unique OWT with high SPM concentration and high relative contribution of ap to total absorption compared to the other OWTs. This bio-optical characterization of Lower Amazon River waters represents a first step for developing remote sensing inversion models adjusted to the optical complexity of this region.more » « less
An official website of the United States government
