skip to main content

Title: Factors shaping alternate successional trajectories in burned black spruce forests of Alaska

Disturbances can interrupt feedbacks that maintain stable plant community structure and create windows of opportunity for vegetation to shift to alternative states. Boreal forests are dominated by tree species that overlap considerably in environmental niche, but there are few tests of what conditions initiate and sustain different forest states. Here, we examine patterns of post‐fire growth and density of tree seedlings in early succession and use structural equation models to estimate relative effects of environmental and pre‐fire conditions, fire characteristics, and biotic interactions. We surveyed tree seedling recruits for 13 yr across a broad range of environmental and fire conditions (n = 89) in Alaskan black spruce stands that burned in 2004. Densities of established seedlings at 13 yr were strongly determined by initial recruitment that occurred within 2 yr after fire. High proportional combustion of the soil organic layer (fire severity) led to increased densities of deciduous seedlings but not of black spruce and had a positive influence on aboveground biomass of all species. Biotic interactions such as mammalian herbivory or woody competition, potential mechanisms for relay floristic succession, had no detectable effects on tree seedling densities or biomass. Repeated surveys instead suggested persistent shifts in successional trajectories of tree communities from spruce to deciduous dominance at sites where high fire severity created positive conditions for deciduous seedling recruitment and growth. Unless future species interactions alter the deciduous dominance of tree seedling composition, the vegetation transformations that we observed in response to high fire severity are likely to persist over the short fire cycle that increasingly characterizes the fire regime of Interior Alaska.

more » « less
Award ID(s):
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Resilience of plant communities to disturbance is supported by multiple mechanisms, including ecological legacies affecting propagule availability, species’ environmental tolerances, and biotic interactions. Understanding the relative importance of these mechanisms for plant community resilience supports predictions of where and how resilience will be altered with disturbance. We tested mechanisms underlying resilience of forests dominated by black spruce ( Picea mariana ) to fire disturbance across a heterogeneous forest landscape in the Northwest Territories, Canada. We combined surveys of naturally regenerating seedlings at 219 burned plots with experimental manipulations of ecological legacies via seed addition of four tree species and vertebrate exclosures to limit granivory and herbivory at 30 plots varying in moisture and fire severity. Black spruce recovery was greatest where it dominated pre-fire, at wet sites with deep residual soil organic layers, and fire conditions of low soil or canopy combustion and longer return intervals. Experimental addition of seed indicated all species were seed-limited, emphasizing the importance of propagule legacies. Black spruce and birch ( Betula papyrifera ) recruitment were enhanced with vertebrate exclusion. Our combination of observational and experimental studies demonstrates black spruce is vulnerable to effects of increased fire activity that erode ecological legacies. Moreover, black spruce relies on wet areas with deep soil organic layers where other species are less competitive. However, other species can colonize these areas if enough seed is available or soil moisture is altered by climate change. Testing mechanisms underlying species’ resilience to disturbance aids predictions of where vegetation will transform with effects of climate change. 
    more » « less
  2. Wildfire activity is increasing in boreal forests as climate warms and dries, increasing risks to rural and urban communities. In black spruce forests of Interior Alaska, fuel reduction treatments are used to create a defensible space for fire suppression and slow fire spread. These treatments introduce novel disturbance characteristics, making longer-term outcomes on ecosystem structure and wildfire risk reduction uncertain. We remeasured a network of sites where fuels were reduced through hand thinning or mechanical shearblading in Interior Alaska to assess how successional trajectories of tree dominance, understory composition, and permafrost change over ∼ 20 years after treatment. We also assessed if these fuel reduction treatments reduce modeled surface rate of fire spread (ROS), flame length, and fireline intensity relative to an untreated black spruce stand, and if surface fire behavior changes over time. In thinned areas, soil organic layer (SOL) disturbance promoted tree seedling recruitment but did not change over time. In shearbladed sites, by contrast, both conifer and broad-leaved deciduous seedling density increased over time and deciduous seedlings were 20 times more abundant than spruce. Thaw depth increased over time in both treatments and was greatest in shearbladed sites with a thin SOL. Understory composition was not altered by thinning but in shearbladed treatments shifted from forbs and horsetail to tall deciduous shrubs and grasses over time. Modeled surface fire behavior was constant in shearbladed sites. This finding is inconsistent with expert opinion, highlighting the need for additional fuels-specific data to capture the changing vegetation structure. Treatment effectiveness at reducing modeled surface ROS, flame length, and fireline intensity depended on the fuel model used for an untreated black spruce stand, pointing to uncertainties about the efficacy of these treatments at mitigating surface fire behavior. Overall, we show that fuel reduction treatments can promote low flammability, deciduous tree dominated successional trajectories, and that shearblading has strong effects on understory composition and permafrost degradation that persist for nearly two decades after disturbance. Such factors need to be considered to enhance the design, management, and predictions of fire behavior in these treatments. 
    more » « less
  3. Abstract

    Root‐associated fungi, particularly ectomycorrhizal fungi (EMF), are critical symbionts of all boreal tree species. Although climatically driven increases in wildfire frequency and extent have been hypothesized to increase vegetation transitions from tundra to boreal forest, fire reduces mycorrhizal inoculum. Therefore, changes in mycobiont inoculum may potentially limit tree‐seedling establishment beyond current treeline. We investigated whether ectomycorrhizal shrubs that resprout after fire support similar fungal taxa to those that associate with tree seedlings that establish naturally after fire. We then assessed whether mycobiont identity correlates with the biomass or nutrient status of these tree seedlings. The majority of fungal taxa observed on shrub and seedling root systems wereEMF, with some dark septate endophytes and ericoid mycorrhizal taxa. Seedlings and adjacent shrubs associated with similar arrays of fungal taxa, and there were strong correlations between the structure of seedling and shrub fungal communities. These results show that resprouting postfire shrubs support fungal taxa compatible with tree seedlings that establish after wildfire. Shrub taxon, distance to the nearest shrub and fire severity influenced the similarity between seedling and shrub fungal communities. Fungal composition was correlated with both foliar C:N ratio and seedling biomass and was one of the strongest explanatory variables predicting seedling biomass. While correlative, these results suggest that mycobionts are important to nutrient acquisition and biomass accrual of naturally establishing tree seedlings at treeline and that mycobiont taxa shared by resprouting postfire vegetation may be a significant source of inoculum for tree‐seedling establishment beyond current treeline.

    more » « less
  4. In boreal North America, much of the landscape is covered by fire-adapted forests dominated by serotinous conifers. For these forests, reductions in fire return interval could limit reproductive success, owing to insufficient time for stands to reach reproductive maturity i.e., to initiate cone production. Improved understanding of the drivers of reproductive maturity can provide important information about the capacity of these forests to self-replace following fire. Here, we assessed the drivers of reproductive maturity in two dominant and widespread conifers, semi-serotinous black spruce and serotinous jack pine. Presence or absence of female cones were recorded in approximately 15,000 individuals within old and recently burned stands in two distinct ecozones of the Northwest Territories (NWT), Canada. Our results show that reproductive maturity was triggered by a minimum tree size threshold rather than an age threshold, with trees reaching reproductive maturity at smaller sizes where environmental conditions were more stressful. The number of reproductive trees per plot increased with stem density, basal area, and at higher latitudes (colder locations). The harsh climatic conditions present at these higher latitudes, however, limited the recruitment of jack pine at the treeline ecotone. The number of reproductive black spruce trees increased with deeper soils, whereas the number of reproductive jack pine trees increased where soils were shallower. We examined the reproductive efficiency i.e., the number of seedlings recruited per reproductive tree, linking pre-fire reproductive maturity of recently burned stands and post-fire seedling recruitment (recorded up to 4 years after the fires) and found that a reproductive jack pine can recruit on average three times more seedlings than a reproductive black spruce. We suggest that the higher reproductive efficiency of jack pine can explain the greater resilience of this species to wildfire compared with black spruce. Overall, these results help link life history characteristics, such as reproductive maturity, to variation in post-fire recruitment of dominant serotinous conifers. 
    more » « less
  5. Abstract

    Black spruce forest communities in boreal Alaska have undergone self‐replacement succession following low‐to‐moderate severity fires for thousands of years. However, recent intensification of interior Alaska's fire regime, particularly deeper burning of the soil organic layer, is leading to shifts to deciduous‐dominated successional pathways, resulting in many socioecological consequences. Both fuel load quantity and quality (or “burnability”) influence black spruce plant communities' potential to burn. Even relatively low fuel loads, such as those seen in black spruce forest understory, can be highly influential drivers of fire behavior due to their high flammability. Additionally, black spruce community self‐replacement following fire can be largely attributed to the suite of functional and life history traits possessed by the species dominating these communities. We used fuel load (quantity and quality) and amount of within‐population plant trait variation (coefficient of variation; CV) as community‐level emergent properties to investigate black spruce forest vulnerability and resilience to a changing fire regime across the landscape. Our burn severity potential index (BSPI), calculated from fuel load quantity and quality measurements, indicates that drier, higher elevation stands with thicker active layers were the most vulnerable to fire‐induced vegetation shifts under a changing fire regime. Forest resilience to fire‐induced vegetation shift, represented by higher CV, was negatively associated with BSPI and greatest in ecoregions dominated by lowland black spruce forests. Together, these analyses provide critical information for determining the likelihood of stand‐replacing shifts in dominant vegetation following fire and for implementing appropriate ecosystem management practices.

    more » « less