skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Changes in the Arctic Ocean Carbon Cycle With Diminishing Ice Cover
Abstract Less than three decades ago only a small fraction of the Arctic Ocean (AO) was ice free and then only for short periods. The ice cover kept sea surfacepCO2at levels lower relative to other ocean basins that have been exposed year round to ever increasing atmospheric levels. In this study, we evaluate sea surfacepCO2measurements collected over a 6‐year period along a fixed cruise track in the Canada Basin. The measurements show that meanpCO2levels are significantly higher during low ice years. ThepCO2increase is likely driven by ocean surface heating and uptake of atmospheric CO2with large interannual variability in the contributions of these processes. These findings suggest that increased ice‐free periods will further increase sea surfacepCO2, reducing the Canada Basin's current role as a net sink of atmospheric CO2 more » « less
Award ID(s):
1751363
PAR ID:
10375344
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
47
Issue:
12
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The Arctic Ocean has turned from a perennial ice‐covered ocean into a seasonally ice‐free ocean in recent decades. Such a shift in the air‐ice‐sea interface has resulted in substantial changes in the Arctic carbon cycle and related biogeochemical processes. To quantitatively evaluate how the oceanic CO2sink responds to rapid sea ice loss and to provide a mechanistic explanation, here we examined the air‐sea CO2flux and the regional CO2sink in the western Arctic Ocean from 1994 to 2019 by two complementary approaches: observation‐based estimation and a data‐driven box model evaluation. ThepCO2observations and model results showed that summer CO2uptake significantly increased by about 1.4 ± 0.6 Tg C decade−1in the Chukchi Sea, primarily due to a longer ice‐free period, a larger open area, and an increased primary production. However, no statistically significant increase in CO2sink was found in the Canada Basin and the Beaufort Sea based on both observations and modeled results. The reduced sea ice coverage in summer in the Canada Basin and the enhanced wind speed in the Beaufort Sea potentially promoted CO2uptake, which was, however, counteracted by a rapidly decreased air‐seapCO2gradient therein. Therefore, the current and future Arctic Ocean CO2uptake trends cannot be sufficiently reflected by the air‐seapCO2gradient alone because of the sea ice variations and other environmental factors. 
    more » « less
  2. Abstract To examine seasonal and regional variabilities in metabolic status and the coupling of net community production (NCP) and air‐sea CO2fluxes in the western Arctic Ocean, we collected underway measurements of surface O2/Ar and partial pressure of CO2(pCO2) in the summers of 2016 and 2018. With a box‐model, we demonstrate that accounting for local sea ice history (in addition to wind history) is important in estimating NCP from biological oxygen saturation (Δ(O2/Ar)) in polar regions. Incorporating this sea ice history correction, we found that most of the western Arctic exhibited positive Δ(O2/Ar) and negativepCO2saturation, Δ(pCO2), indicative of net autotrophy but with the relationship between the two parameters varying regionally. In the heavy ice‐covered areas, where air‐sea gas exchange was suppressed, even minor NCP resulted in relatively high Δ(O2/Ar) and lowpCO2in water due to limited gas exchange. Within the marginal ice zone, NCP and CO2flux magnitudes were strongly inversely correlated, suggesting an air to sea CO2flux induced primarily by biological CO2removal from surface waters. Within ice‐free waters, the coupling of NCP and CO2flux varied according to nutrient supply. In the oligotrophic Canada Basin, NCP and CO2flux were both small, controlled mainly by air‐sea gas exchange. On the nutrient‐rich Chukchi Shelf, NCP was strong, resulting in great O2release and CO2uptake. This regional overview of NCP and CO2flux in the western Arctic Ocean, in its various stages of ice‐melt and nutrient status, provides useful insight into the possible biogeochemical evolution of rapidly changing polar oceans. 
    more » « less
  3. Abstract Solute exclusion during sea ice formation is a potentially important contributor to the Arctic Ocean inorganic carbon cycle that could increase as ice cover diminishes. When ice forms, solutes are excluded from the ice matrix, creating a brine that includes dissolved inorganic carbon (DIC) and total alkalinity (AT). The brine sinks, potentially exporting DIC andATto deeper water. This phenomenon has rarely been observed, however. In this manuscript, we examine a ~1 yearpCO2mooring time series where a ~35‐μatm increase inpCO2was observed in the mixed layer during the ice formation period, corresponding to a simultaneous increase in salinity from 27.2 to 28.5. Using salinity and ice based mass balances, we show that most of the observed increases can be attributed to solute exclusion during ice formation. The resultingpCO2is sensitive to the ratio ofATand DIC retained in the ice and the mixed layer depth, which controls dilution of the ice‐derivedATand DIC. In the Canada Basin, of the ~92 μmol/kg increase in DIC, 17 μmol/kg was taken up by biological production and the remainder was trapped between the halocline and the summer stratified surface layer. Although not observed before the mooring was recovered, this inorganic carbon was likely later entrained with surface water, increasing thepCO2at the surface. It is probable that inorganic carbon exclusion during ice formation will have an increasingly important influence on DIC andpCO2in the surface of the Arctic Ocean as seasonal ice production and wind‐driven mixing increase with diminishing ice cover. 
    more » « less
  4. Abstract The deep ocean releases large amounts of old, pre‐industrial carbon dioxide (CO2) to the atmosphere through upwelling in the Southern Ocean, which counters the marine carbon uptake occurring elsewhere. This Southern Ocean CO2release is relevant to the global climate because its changes could alter atmospheric CO2levels on long time scales, and also affects the present‐day potential of the Southern Ocean to take up anthropogenic CO2. Here, year‐round profiling float measurements show that this CO2release arises from a zonal band of upwelling waters between the Subantarctic Front and wintertime sea‐ice edge. This band of high CO2subsurface water coincides with the outcropping of the 27.8 kg m−3isoneutral density surface that characterizes Indo‐Pacific Deep Water (IPDW). It has a potential partial pressure of CO2exceeding current atmospheric CO2levels (∆PCO2) by 175 ± 32 μatm. Ship‐based measurements reveal that IPDW exhibits a distinct ∆PCO2maximum in the ocean, which is set by remineralization of organic carbon and originates from the northern Pacific and Indian Ocean basins. Below this IPDW layer, the carbon content increases downwards, whereas ∆PCO2decreases. Most of this vertical ∆PCO2decline results from decreasing temperatures and increasing alkalinity due to an increased fraction of calcium carbonate dissolution. These two factors limit the CO2outgassing from the high‐carbon content deep waters on more southerly surface outcrops. Our results imply that the response of Southern Ocean CO2fluxes to possible future changes in upwelling are sensitive to the subsurface carbon chemistry set by the vertical remineralization and dissolution profiles. 
    more » « less
  5. Abstract The Arctic Ocean is more susceptible to ocean acidification than other marine environments due to its weaker buffering capacity, while its cold surface water with relatively low salinity promotes atmospheric CO2uptake. We studied how sea‐ice microbial communities in the central Arctic Ocean may be affected by changes in the carbonate system expected as a consequence of ocean acidification. In a series of four experiments during late summer 2018 aboard the icebreakerOden, we addressed microbial growth, production of dissolved organic carbon (DOC) and extracellular polymeric substances (EPS), photosynthetic activity, and bacterial assemblage structure as sea‐ice microbial communities were exposed to elevated partial pressures of CO2(pCO2). We incubated intact, bottom ice‐core sections and dislodged, under‐ice algal aggregates (dominated byMelosira arctica) in separate experiments under approximately 400, 650, 1000, and 2000 μatm pCO2for 10 d under different nutrient regimes. The results indicate that the growth of sea‐ice algae and bacteria was unaffected by these higher pCO2levels, and concentrations of DOC and EPS were unaffected by a shifted inorganic C/N balance, resulting from the CO2enrichment. These central Arctic sea‐ice microbial communities thus appear to be largely insensitive to short‐term pCO2perturbations. Given the natural, seasonally driven fluctuations in the carbonate system of sea ice, its resident microorganisms may be sufficiently tolerant of large variations in pCO2and thus less vulnerable than pelagic communities to the impacts of ocean acidification, increasing the ecological importance of sea‐ice microorganisms even as the loss of Arctic sea ice continues. 
    more » « less