We analyze quiet‐time data from the Gravity Field and Ocean Circulation Explorer satellite as it overpassed the Southern Andes at
Observations during 12 January 2016 revealed a series of events of significant gravity wave (GW) activity over Europe. Analysis of derived temperatures from the Atmospheric InfraRed Sounder (AIRS) provides insight into the sources of these GWs, and include a new observation of stratosphere polar night jet (PNJ) generated GWs. Mountain waves were present during this time as well over the French Alps and the Carpathian Mountains and had maximum temperature perturbations,
- PAR ID:
- 10375362
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Atmospheres
- Volume:
- 125
- Issue:
- 21
- ISSN:
- 2169-897X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract z ≃275 km on 5 July 2010 at 23 UT. We extract the 20 largest traveling atmospheric disturbances from the density perturbations and cross‐track winds using Fourier analysis. Using gravity wave (GW) dissipative theory that includes realistic molecular viscosity, we search parameter space to determine which hot spot traveling atmospheric disturbances are GWs. This results in the identification of 17 GWs having horizontal wavelengthsλ H = 170–1,850 km, intrinsic periodsτ I r = 11–54 min, intrinsic horizontal phase speedsc I H = 245–630 m/s, and density perturbations0.03–7%. We unambiguously determine the propagation direction for 11 of these GWs and find that most had large meridional components to their propagation directions. Using reverse ray tracing, we find that 10 of these GWs must have been created in the mesosphere or thermosphere. We show that mountain waves (MWs) were observed in the stratosphere earlier that day and that these MWs saturated at z ∼ 70–75 km from convective instability. We suggest that these 10 Gravity Field and Ocean Circulation Explorer hot spot GWs are likely tertiary (or higher‐order) GWs created from the dissipation of secondary GWs excited by the local body forces created from MW breaking. We suggest that the other GW is likely a secondary or tertiary (or higher‐order) GW. This study strongly suggests that the hot spot GWs over the Southern Andes in the quiet‐time middle winter thermosphere cannot be successfully modeled by conventional global circulation models where GWs are parameterized and launched in the troposphere or stratosphere. -
Abstract During 30 September to 9 October 2016, Hurricane Matthew traversed the Caribbean Sea to the east coast of the United States. During its period of greatest intensity, in the central Caribbean, Matthew excited a large number of concentric gravity waves (GWs or CGWs). In this paper, we report on hurricane‐generated CGWs observed in both the stratosphere and mesosphere from spaceborne satellites and in the ionosphere by ground Global Positioning System receivers. We found CGWs with horizontal wavelengths of ~200–300 km in the stratosphere (height of ~30–40 km) and in the airglow layer of the mesopause (height of ~85–90 km), and we found concentric traveling ionospheric disturbances (TIDs or CTIDs) with horizontal wavelengths of ~250–350 km in the ionosphere (height of ~100–400 km). The observed TIDs lasted for more than several hours on 1, 2, and 7 October 2016. We also briefly discuss the vertical and horizontal propagation of the Hurricane Matthew‐induced GWs and TIDs. This study shows that Hurricane Matthew induced significant dynamical coupling between the troposphere and the entire middle and upper atmosphere via GWs. It is the first comprehensive satellite analysis of gravity wave propagation generated by hurricane event from the troposphere through the stratosphere and mesosphere into the ionosphere.
-
Abstract Mountain waves are known sources of fluctuations in the upper atmosphere. However, their effects over the Continental United States (CONUS) are considered modest as compared to hot spots such as the Southern Andes. Here, we present an observation‐guided case study examining the dynamics of gravity waves (GWs) and their impacts on the ionosphere over the CONUS prior to the cold air outbreak in December 2022, which resulted from a significant distortion of the tropospheric polar vortex. The investigation relies on MERRA‐2 and ERA5 reanalysis data sets for the climatological contextualization, analysis of GWs based on National Aeronautics and Space Administration Aqua satellite's Atmospheric Infrared Sounder, 557.7 and 630.0 nm airglow emission observations, and the measurements of ionospheric disturbances retrieved from Global Navigation Satellite System signal‐based total electron content (TEC) and Super Dual Auroral Radar Network observations. We demonstrate that the tropospheric polar jet stream shifted toward the Rocky Mountains, generated large amplitude GWs (up to 11 K of brightness temperature), which, aided by winter‐time winds over mid‐latitudes, could propagate to mesospheric heights. The breaking of GWs plausibly led to the generation of a plethora of secondary acoustic and GWs that eventually emerged as the sources of extensive ionospheric fluctuations of ∼3–30 min periods and up to 0.7 TECu, observed across the entire CONUS for several days. This case offers a valuable demonstration of the interplay between tropospheric circulation and the ionosphere over CONUS, pointing to the need for a better understanding of wave‐driven deep‐atmosphere coupled dynamics.
-
Abstract We analyze the gravity waves (GWs) from the ground to the thermosphere during 11–14 January 2016 using the nudged HI Altitude Mechanistic general Circulation Model. We find that the entrance, core and exit regions of the polar vortex jet are important for generating primary GWs and amplifying GWs from below. These primary GWs dissipate in the upper stratosphere/lower mesosphere and deposit momentum there; the atmosphere responds by generating secondary GWs. This process is repeated, resulting in medium to large‐scale higher‐order, thermospheric GWs. We find that the amplitudes of the secondary/higher‐order GWs from sources below the polar vortex jet are exponentially magnified. The higher‐order, thermospheric GWs have concentric ring, arc‐like and planar structures, and spread out latitudinally to 10 − 90°N. Those GWs with the largest amplitudes propagate against the background wind. Some of the higher‐order GWs generated over Europe propagate over the Arctic region then southward over the US to ∼15–20°N daily at ∼14 − 24 UT (∼9 − 16 LT) due to the favorable background wind. These GWs have horizontal wavelengths
λ H ∼ 200 − 2,200 km, horizontal phase speedsc H ∼ 165 − 260 m/s, and periodsτ r ∼ 0.3 − 2.4 hr. Such GWs could be misidentified as being generated by auroral activity. The large‐scale, higher‐order GWs are generated in the lower thermosphere and propagate southwestward daily across the northern mid‐thermosphere at ∼8–16 LT withλ H ∼ 3,000 km andc H ∼ 650 m/s. We compare the simulated GWs with those observed by AIRS, VIIRS/DNB, lidar and meteor radars and find reasonable to good agreement. Thus the polar vortex jet is important for facilitating the global generation of medium to large‐scale, higher‐order thermospheric GWs via multi‐step vertical coupling. -
Abstract The satellite‐based Cloud Imaging and Particle Size (CIPS) instrument and Atmospheric Infrared Sounder (AIRS) observed concentric gravity waves (GWs) generated by Typhoon Yutu in late October 2018. This work compares CIPS and AIRS nadir viewing observations of GWs at altitudes of 50–55 and 30–40 km, respectively, to simulations from the high‐resolution European Centre for Medium‐Range Weather Forecasting Integrated Forecasting System (ECMWF‐IFS) and ECMWF reanalysis v5 (ERA5). Both ECMWF‐IFS with 9 km and ERA5 with 31 km horizontal resolution show concentric GWs at similar locations and timing as the AIRS and CIPS observations. The GW wavelengths are ∼225–236 km in ECMWF‐IFS simulations, which compares well with the wavelength inferred from the observations. After validation of ECMWF GWs, five category five typhoon events during 2018 are analyzed using ECMWF to obtain characteristics of concentric GWs in the Western Pacific regions. The amplitudes of GWs in the stratosphere are not strongly correlated with the strength of typhoons, but are controlled by background wind conditions. Our results confirm that amplitudes and shapes of concentric GWs observed in the stratosphere and lowermost mesosphere are heavily influenced by the background wind conditions.