skip to main content


Title: A Generalized Interpolation Material Point Method for Shallow Ice Shelves. 1: Shallow Shelf Approximation and Ice Thickness Evolution
Abstract

We develop a generalized interpolation material point method (GIMPM) for the shallow shelf approximation (SSA) of ice flow. The GIMPM, which can be viewed as a particle version of the finite element method, is used here to solve the shallow shelf approximations of the momentum balance and ice thickness evolution equations. We introduce novel numerical schemes for particle splitting and integration at domain boundaries to accurately simulate the spreading of an ice shelf. The advantages of the proposed GIMPM‐SSA framework include efficient advection of history or internal state variables without diffusion errors, automated tracking of the ice front and grounding line at sub‐element scales, and a weak formulation based on well‐established conventions of the finite element method with minimal additional computational cost. We demonstrate the numerical accuracy and stability of the GIMPM using 1‐D and 2‐D benchmark examples. We also compare the accuracy of the GIMPM with the standard material point method (sMPM) and a reweighted form of the sMPM. We find that the grid‐crossing error is very severe for SSA simulations with the sMPM, whereas the GIMPM successfully mitigates this error. While the grid‐crossing error can be reasonably reduced in the sMPM by implementing a simple material point reweighting scheme, this approach it not as accurate as the GIMPM. Thus, we illustrate that the GIMPM‐SSA framework is viable for the simulation of ice sheet‐shelf evolution and enables boundary tracking and error‐free advection of history or state variables, such as ice thickness or damage.

 
more » « less
Award ID(s):
1847173
PAR ID:
10375452
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Advances in Modeling Earth Systems
Volume:
13
Issue:
8
ISSN:
1942-2466
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Ice shelf fracture is responsible for roughly half of Antarctic ice mass loss in the form of calving and can weaken buttressing of upstream ice flow. Large uncertainties associated with the ice sheet response to climate variations are due to a poor understanding of these fracture processes and how to model them. Here, we address these problems by implementing an anisotropic, nonlocal integral formulation of creep damage within a large‐scale shallow‐shelf ice flow model. This model can be used to study the full evolution of fracture from initiation of crevassing to rifting that eventually causes tabular calving. While previous ice shelf fracture models have largely relied on simple expressions to estimate crevasse depths, our model parameterizes fracture as a progressive damage evolution process in three‐dimensions (3‐D). We also implement an efficient numerical framework based on the material point method, which avoids advection errors. Using an idealized marine ice sheet, we test the creep damage model and a crevasse‐depth based damage model, including a modified version of the latter that accounts for damage evolution due to necking and mass balance. We demonstrate that the creep damage model is best suited for capturing weakening and rifting over shorter (monthly/yearly) timescales, and that anisotropic damage reproduces typically observed fracture patterns better than isotropic damage. Because necking and mass balance can significantly influence damage on longer (decadal) timescales, we discuss the potential for a combined approach between models to best represent mechanical weakening and tabular calving within long‐term simulations.

     
    more » « less
  2. Abstract. Time-dependent simulations of ice sheets require two equations to be solved:the mass transport equation, derived from the conservation of mass, and thestress balance equation, derived from the conservation of momentum. The masstransport equation controls the advection of ice from the interior of the icesheet towards its periphery, thereby changing its geometry. Because it isbased on an advection equation, a stabilization scheme needs to beemployed when solved using the finite-element method. Several stabilizationschemes exist in the finite-element method framework, but their respectiveaccuracy and robustness have not yet been systematically assessed forglaciological applications. Here, we compare classical schemes used in thecontext of the finite-element method: (i) artificial diffusion, (ii)streamline upwinding, (iii) streamline upwind Petrov–Galerkin, (iv)discontinuous Galerkin, and (v) flux-corrected transport. We also look at thestress balance equation, which is responsible for computing the ice velocitythat “advects” the ice downstream. To improve the velocity computationaccuracy, the ice-sheet modeling community employs several sub-elementparameterizations of physical processes at the grounding line, the point wherethe grounded ice starts to float onto the ocean. Here, we introduce a newsub-element parameterization for the driving stress, the force that drives theice-sheet flow. We analyze the response of each stabilization scheme byrunning transient simulations forced by ice-shelf basal melt. The simulationsare based on an idealized ice-sheet geometry for which there is no influenceof bedrock topography. We also perform transient simulations of the AmundsenSea Embayment, West Antarctica, where real bedrock and surface elevations areemployed. In both idealized and real ice-sheet experiments, stabilizationschemes based on artificial diffusion lead systematically to a bias towardsmore mass loss in comparison to the other schemes and therefore should beavoided or employed with a sufficiently high mesh resolution in the vicinityof the grounding line. We also run diagnostic simulations to assess theaccuracy of the driving stress parameterization, which, in combination with anadequate parameterization for basal stress, provides improved numericalconvergence in ice speed computations and more accurate results. 
    more » « less
  3. Abstract We develop a two-dimensional, plan-view formulation of ice-shelf flow and viscoelastic ice-shelf flexure. This formulation combines, for the first time, the shallow-shelf approximation for horizontal ice-shelf flow (and shallow-stream approximation for flow on lubricated beds such as where ice rises and rumples form), with the treatment of a thin-plate flexure. We demonstrate the treatment by performing two finite-element simulations: one of the relict pedestalled lake features that exist on some debris-covered ice shelves due to strong heterogeneity in surface ablation, and the other of ice rumpling in the grounding zone of an ice rise. The proposed treatment opens new venues to investigate physical processes that require coupling between the longitudinal deformation and vertical flexure, for instance, the effects of surface melting and supraglacial lakes on ice shelves, interactions with the sea swell, and many others. 
    more » « less
  4. Tedesco, Marco ; Lai, Ching_Yao ; Brinkerhoff, Douglas ; Stearns, Leigh (Ed.)
    Emulators of ice flow models have shown promise for speeding up simulations of glaciers and ice sheets. Existing ice flow emulators have relied primarily on convolutional neural networks (CNN’s), which assume that model inputs and outputs are discretized on a uniform computational grid. However, many existing finite element-based ice sheet models such as the Ice-Sheet and Sea-level System model (ISSM) benefit from their ability to use unstructured computational meshes. Unstructured meshes allow for greater flexibility and computational efficiency in many modeling scenarios. In this work, we present an emulator of a higher order, finite element ice flow model based on a graph neural network (GNN) architecture. In this architecture, an unstructured finite element mesh is represented as a graph, with inputs and outputs of the ice flow model represented as variables on graph nodes and edges. An advantage of this approach is that the ice flow emulator can interface directly with a standard finite element –based ice sheet model by mapping between the finite element mesh and a graph suitable for the GNN emulator. We test the ability of the GNN to predict velocity fields on complex mountain glacier geometries and show how the emulated velocity can be used to solve for mass continuity using a standard finite element approach. 
    more » « less
  5. Abstract

    Basal melting of ice shelves is a major source of mass loss from the Antarctic Ice Sheet. In situ measurements of ice shelf basal melt rates are sparse, while the more extensive estimates from satellite altimetry require precise information about firn density and characteristics of near‐surface layers. We describe a novel method for estimating multidecadal basal melt rates using airborne ice penetrating radar data acquired during a 3‐year survey of the Ross Ice Shelf. These data revealed an ice column with distinct upper and lower units whose thicknesses change as ice flows from the grounding line toward the ice front. We interpret the lower unit as continental meteoric ice that has flowed across the grounding line and the upper unit as ice formed from snowfall onto the relatively flat ice shelf. We used the ice thickness difference and strain‐induced thickness change of the lower unit between the survey lines, combined with ice velocities, to derive basal melt rates averaged over one to six decades. Our results are similar to satellite laser altimetry estimates for the period 2003–2009, suggesting that the Ross Ice Shelf melt rates have been fairly stable for several decades. We identify five sites of elevated basal melt rates, in the range 0.5–2 m a−1, near the ice shelf front. These hot spots indicate pathways into the sub‐ice‐shelf ocean cavity for warm seawater, likely a combination of summer‐warmed Antarctic Surface Water and modified Circumpolar Deep Water, and are potential areas of ice shelf weakening if the ocean warms.

     
    more » « less