Abstract By synthesizing recent studies employing a wide range of approaches (modern observations, paleo reconstructions, and climate model simulations), this paper provides a comprehensive review of the linkage between multidecadal Atlantic Meridional Overturning Circulation (AMOC) variability and Atlantic Multidecadal Variability (AMV) and associated climate impacts. There is strong observational and modeling evidence that multidecadal AMOC variability is a crucial driver of the observed AMV and associated climate impacts and an important source of enhanced decadal predictability and prediction skill. The AMOC‐AMV linkage is consistent with observed key elements of AMV. Furthermore, this synthesis also points to a leading role of the AMOC in a range of AMV‐related climate phenomena having enormous societal and economic implications, for example, Intertropical Convergence Zone shifts; Sahel and Indian monsoons; Atlantic hurricanes; El Niño–Southern Oscillation; Pacific Decadal Variability; North Atlantic Oscillation; climate over Europe, North America, and Asia; Arctic sea ice and surface air temperature; and hemispheric‐scale surface temperature. Paleoclimate evidence indicates that a similar linkage between multidecadal AMOC variability and AMV and many associated climate impacts may also have existed in the preindustrial era, that AMV has enhanced multidecadal power significantly above a red noise background, and that AMV is not primarily driven by external forcing. The role of the AMOC in AMV and associated climate impacts has been underestimated in most state‐of‐the‐art climate models, posing significant challenges but also great opportunities for substantial future improvements in understanding and predicting AMV and associated climate impacts. 
                        more » 
                        « less   
                    
                            
                            The Relationship Between U.S. East Coast Sea Level and the Atlantic Meridional Overturning Circulation: A Review
                        
                    
    
            Abstract Scientific and societal interest in the relationship between the Atlantic Meridional Overturning Circulation (AMOC) and U.S. East Coast sea level has intensified over the past decade, largely due to (1) projected, and potentially ongoing, enhancement of sea level rise associated with AMOC weakening and (2) the potential for observations of U.S. East Coast sea level to inform reconstructions of North Atlantic circulation and climate. These implications have inspired a wealth of model‐ and observation‐based analyses. Here, we review this research, finding consistent support in numerical models for an antiphase relationship between AMOC strength and dynamic sea level. However, simulations exhibit substantial along‐coast and intermodel differences in the amplitude of AMOC‐associated dynamic sea level variability. Observational analyses focusing on shorter (generally less than decadal) timescales show robust relationships between some components of the North Atlantic large‐scale circulation and coastal sea level variability, but the causal relationships between different observational metrics, AMOC, and sea level are often unclear. We highlight the importance of existing and future research seeking to understand relationships between AMOC and its component currents, the role of ageostrophic processes near the coast, and the interplay of local and remote forcing. Such research will help reconcile the results of different numerical simulations with each other and with observations, inform the physical origins of covariability, and reveal the sensitivity of scaling relationships to forcing, timescale, and model representation. This information will, in turn, provide a more complete characterization of uncertainty in relevant relationships, leading to more robust reconstructions and projections. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1805029
- PAR ID:
- 10375511
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Oceans
- Volume:
- 124
- Issue:
- 9
- ISSN:
- 2169-9275
- Format(s):
- Medium: X Size: p. 6435-6458
- Size(s):
- p. 6435-6458
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Monthly observations are used to study the relationship between the Atlantic meridional overturning circulation (AMOC) at 26° N and sea level (ζ) on the New England coast (northeastern United States) over nonseasonal timescales during 2004–2017. Variability inζis anticorrelated with AMOC on intraseasonal and interannual timescales. This anticorrelation reflects the stronger underlying antiphase relationship between ageostrophic Ekman‐related AMOC transports due to local zonal winds across 26° N andζchanges arising from local wind and pressure forcing along the coast. These distinct local atmospheric variations across 26° N and along coastal New England are temporally correlated with one another on account of large‐scale atmospheric teleconnection patterns. Geostrophic AMOC contributions from the Gulf Stream through the Florida Straits and upper‐mid‐ocean transport across the basin are together uncorrelated withζ. This interpretation contrasts with past studies that understoodζand AMOC as being in geostrophic balance with one another.more » « less
- 
            Abstract The difference between North Atlantic subpolar gyre sea surface temperatures (SPG SSTs) and hemispheric‐ or global‐scale surface temperatures has been utilized as an index of centennial‐timescale changes in Atlantic Meridional Overturning Circulation (AMOC) strength. Here, using Community Earth System Model ensembles, we show that surface temperature‐based indices (STIs) proposed to date largely reflect global‐scale temperature trends and thus do not reflect dynamical relationships with AMOC. More broadly, we find that relationships between STIs, SPG SSTs, and AMOC strength differ greatly in significance and magnitude over different time periods because they are dependent upon the nature of external forcing. In the twentieth century, characterized by offsetting greenhouse gas and aerosol forcing, the relationship between SSTs and AMOC strength varies widely and changes sign across a 20‐member ensemble. We conclude that STIs and SPG SSTs are poor predictors of centennial‐timescale AMOC strength variations.more » « less
- 
            null (Ed.)The Mediterranean Sea can be viewed as a “barometer” of the North Atlantic Ocean, because its sea level responds to oceanic-gyre-scale changes in atmospheric pressure and wind forcing, related to the North Atlantic Oscillation (NAO). The climate of the North Atlantic is influenced by the Atlantic meridional overturning circulation (AMOC) as it transports heat from the South Atlantic toward the subpolar North Atlantic. This study reports on a teleconnection between the AMOC transport measured at 26.5°N and the Mediterranean Sea level during 2004–17: a reduced/increased AMOC transport is associated with a higher/lower sea level in the Mediterranean. Processes responsible for this teleconnection are analyzed in detail using available satellite and in situ observations and an atmospheric reanalysis. First, it is shown that on monthly to interannual time scales the AMOC and sea level are both driven by similar NAO-like atmospheric circulation patterns. During a positive/negative NAO state, stronger/weaker trade winds (i) drive northward/southward anomalies of Ekman transport across 26.5°N that directly affect the AMOC and (ii) are associated with westward/eastward winds over the Strait of Gibraltar that force water to flow out of/into the Mediterranean Sea and thus change its average sea level. Second, it is demonstrated that interannual changes in the AMOC transport can lead to thermosteric sea level anomalies near the North Atlantic eastern boundary. These anomalies can (i) reach the Strait of Gibraltar and cause sea level changes in the Mediterranean Sea and (ii) represent a mechanism for negative feedback on the AMOC.more » « less
- 
            Abstract The system of oceanic flows constituting the Atlantic Meridional Overturning Circulation (AMOC) moves heat and other properties to the subpolar North Atlantic, controlling regional climate, weather, sea levels, and ecosystems. Climate models suggest a potential AMOC slowdown towards the end of this century due to anthropogenic forcing, accelerating coastal sea level rise along the western boundary and dramatically increasing flood risk. While direct observations of the AMOC are still too short to infer long-term trends, we show here that the AMOC-induced changes in gyre-scale heat content, superimposed on the global mean sea level rise, are already influencing the frequency of floods along the United States southeastern seaboard. We find that ocean heat convergence, being the primary driver for interannual sea level changes in the subtropical North Atlantic, has led to an exceptional gyre-scale warming and associated dynamic sea level rise since 2010, accounting for 30-50% of flood days in 2015-2020.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
