Abstract The nature of the 3‐s ultralow frequency (ULF) wave in the Earth's foreshock region and the associated wave‐particle interaction are not yet well understood. We investigate the 3‐s ULF waves using Magnetospheric Multiscale (MMS) observations. By combining the plasma rest frame wave properties obtained from multiple methods with the instability analysis based on the velocity distribution in the linear wave stage, the ULF wave is determined to be due to the ion/ion nonresonant mode instability. The interaction between the wave and ions is analyzed using the phase relationship between the transverse wave fields and ion velocities and using the longitudinal momentum equation. During the stage when ULF waves have sinusoidal waveforms up to |dB|/|B0| ~ 3, wheredBis the wave magnetic field andB0is the background magnetic field, the wave electric fields perpendicular toB0do negative work to solar wind ions; alongB0, a longitudinal electric field develops, but theV × Bforce is stronger and leads to solar wind ion deceleration. During the same wave stage, the backstreaming beam ions gain energy from the transverse wave fields and get deceleration alongB0by the longitudinal electric field. The ULF wave leads to electron heating, preferentially in the direction perpendicular to the local magnetic field. Secondary waves are generated within the ULF waveforms, including whistler waves near half of the electron cyclotron frequency, high‐frequency electrostatic waves, and magnetosonic whistler waves. The work improves the understanding of the nature of 3‐s ULF waves and the associated wave‐particle interaction.
more »
« less
Quantifying Event‐Specific Radial Diffusion Coefficients of Radiation Belt Electrons With the PPMLR‐MHD Simulation
Abstract Using the global Lagrangian version of the piecewise parabolic method‐magnetohydrodynamic (PPMLR‐MHD) model, we simulate two consecutive storms in December 2015, a moderate storm on 14–15 December and a strong storm on 19–22 December, and calculate the radial diffusion coefficients (DLL) from the simulated ultralow frequency waves. We find that even though the strong storm leads to more enhancedBzandEφpower than the moderate storm, the two storms share in common a lot of features on the azimuthal mode structure and power spectrum of ultralow frequency waves. For both storms, the totalBzandEφpower is better correlated with the solar wind dynamic pressure in the storm initial phase and more correlated withAEindex in the recovery phase.Bzwave power is shown to be mostly distributed in low mode numbers, whileEφpower spreads over a wider range of modes. Furthermore, theBzandEφpower spectral densities are found to be higher at higherLregions, with a strongerLdependence in theBzspectra. The estimatedDLLbased on MHD fields shows that inside the magnetopause, the contribution from electric fields is larger than or comparable to that from magnetic fields, and our event‐specific MHD‐basedDLLcan be smaller than some previous empiricalDLLestimations by more than an order of magnitude. At last, by validating against in situ observations from Magnetospheric Multiscale spacecraft, our MHD results are found to generally well reproduce the totalBzfields and wave power for both storms, while theEφpower is underestimated in the MHD simulations.
more »
« less
- Award ID(s):
- 1752736
- PAR ID:
- 10375523
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Space Physics
- Volume:
- 125
- Issue:
- 5
- ISSN:
- 2169-9380
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Reconstruction of the magnetic field, electric current, and plasma pressure is provided using a new data mining (DM) method with weighted nearest neighbors (NN) for strong storms with the storm activity indexSym‐H < −300 nT, the Bastille Day event (July 2000), and the 20 November 2003 superstorm. It is shown that the new method significantly reduces the statistical bias of the original NN algorithm toward weaker storms. In the DM approach the magnetic field is reconstructed using a small NN subset of the large historical database, with the subset numberKNN ≫ 1being still much larger than any simultaneous multiprobe observation number. This allows one to fit with observations a very flexible magnetic field model using basis function expansions for equatorial and field‐aligned currents, and at the same time, to keep the model sensitive to storm variability. This also allows one to calculate the plasma pressure by integrating the quasi‐static force balance equation with the isotropic plasma approximation. For strong storms of particular importance becomes the resolution of the eastward current, which prevents the divergence of the pressure integral. It is shown that in spite of the strong reduction of the dominant NN number in the new weighted NN algorithm to capture strong storm features, it is still possible to resolve the eastward current and to retrieve plasma pressure distributions. It is found that the pressure peak for strong storms may be as close as≈2.1REto Earth and its value may exceed 300 nPa.more » « less
-
Abstract We extend our database of whistler mode chorus, based on data from seven satellites, by including ∼3 years of data from Radiation Belt Storm Probes (RBSP)‐A and RBSP‐B and an additional ∼6 years of data from Time History of Events and Macroscale Interactions during Substorms (THEMIS)‐A, THEMIS‐D, and THEMIS‐E. The new database allows us to probe the near‐equatorial region in detail, revealing new features. In the equatorial source region, |λm|<6°, strong wave power is most extensive in the 0.1–0.4fcebands in the region 21–11 magnetic local time (MLT) from the plasmapause out toL∗ = 8 and beyond, especially near dawn. At higher frequencies, in the 0.4–0.6fcefrequency bands, strong wave power is more tightly confined, typically being restricted to the postmidnight sector in the region 4<L∗<6. The global distribution of strong chorus wave power changes dramatically with increasing magnetic latitude, with strong chorus waves in the region 12<|λm|<18° predominantly observed at frequencies below 0.3fcein the prenoon sector, in the region 5<L∗<8.more » « less
-
Abstract Using a two‐dimensional particle‐in‐cell simulation, we investigate the effects and roles of upper‐hybrid waves (UHW) near the electron diffusion region (EDR). The energy dissipation via the wave‐particle interaction in our simulation agrees withJ · E′measured by magnetospheric multiscale (MMS) spacecraft. It means that UHW contributes to the local energy dissipation. As a result of wave‐particle interactions, plasma parameters which determine the larger‐scale energy dissipation in the EDR are changed. They‐directional current decreases while the pressure tensorPyzincreases/decreases when the agyrotropic beam density is low/high, where(x, y, z)‐coordinates correspond the(L, M, N)‐boundary coordinates. Because the reconnection electric field comes from−∂Pyz/∂z, our result implies that UHW plays an additional role in affecting larger‐scale energy dissipation in the EDR by changing plasma parameters. We provide a simple diagram that shows how the UHW activities change the profiles of plasma parameters near the EDR comparing cases with and without UHW.more » « less
-
Abstract We present examples of high‐latitude field‐aligned current (FAC) and toroidal magnetic potential patterns in both hemispheres reconstructed at a 2‐min cadence using an updated optimal interpolation (OI) method that ingests magnetic perturbation data provided by the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) program. A solstice and an equinoctial event are studied to demonstrate the reconstructed patterns and to provide scientific insights into FAC response to different solar wind drivers. For the 14 June 2011 high‐speed stream event with mostly northwardBzdriving, we found persistently stronger FACs in the Northern Hemisphere. Extreme interhemispheric asymmetry is associated with the interplanetary magnetic field (IMF) direction and large dipole tilt, consistent with earlier studies. FAC asymmetries seen during an isolated substorm can be attributed to dipole tilt. During relatively low geomagnetic activity, the FAC response to IMFBxchanges is identified. For the 17–18 March 2013 period, we provide global snapshots of rapid FAC changes related to an interplanetary shock passage. We further present comparisons between instantaneous and mean behaviors of FAC for the solar wind sheath passage and interplanetary coronal mass ejection southwardBzinterval and northwardBzintervals. We show that (1) sheath passage results in strong FAC and high variation in the dayside polar cap region and pre‐midnight region, different from the typical R1/R2 currents during prolonged southwardBz; (2) four‐cell reverse patterns appear during northwardBzbut are not stable; and (3) persistent dawn‐dusk asymmetry is seen throughout the storm, especially during an extreme substorm, likely associated with a dawnside current wedge.more » « less
An official website of the United States government
