skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Effects of Upper‐Hybrid Waves on Energy Dissipation in the Electron Diffusion Region
Abstract Using a two‐dimensional particle‐in‐cell simulation, we investigate the effects and roles of upper‐hybrid waves (UHW) near the electron diffusion region (EDR). The energy dissipation via the wave‐particle interaction in our simulation agrees withJ · Emeasured by magnetospheric multiscale (MMS) spacecraft. It means that UHW contributes to the local energy dissipation. As a result of wave‐particle interactions, plasma parameters which determine the larger‐scale energy dissipation in the EDR are changed. They‐directional current decreases while the pressure tensorPyzincreases/decreases when the agyrotropic beam density is low/high, where(x, y, z)‐coordinates correspond the(L, M, N)‐boundary coordinates. Because the reconnection electric field comes from−∂Pyz/∂z, our result implies that UHW plays an additional role in affecting larger‐scale energy dissipation in the EDR by changing plasma parameters. We provide a simple diagram that shows how the UHW activities change the profiles of plasma parameters near the EDR comparing cases with and without UHW.  more » « less
Award ID(s):
1842643
PAR ID:
10374441
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
47
Issue:
19
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The nature of the 3‐s ultralow frequency (ULF) wave in the Earth's foreshock region and the associated wave‐particle interaction are not yet well understood. We investigate the 3‐s ULF waves using Magnetospheric Multiscale (MMS) observations. By combining the plasma rest frame wave properties obtained from multiple methods with the instability analysis based on the velocity distribution in the linear wave stage, the ULF wave is determined to be due to the ion/ion nonresonant mode instability. The interaction between the wave and ions is analyzed using the phase relationship between the transverse wave fields and ion velocities and using the longitudinal momentum equation. During the stage when ULF waves have sinusoidal waveforms up to |dB|/|B0| ~ 3, wheredBis the wave magnetic field andB0is the background magnetic field, the wave electric fields perpendicular toB0do negative work to solar wind ions; alongB0, a longitudinal electric field develops, but theV × Bforce is stronger and leads to solar wind ion deceleration. During the same wave stage, the backstreaming beam ions gain energy from the transverse wave fields and get deceleration alongB0by the longitudinal electric field. The ULF wave leads to electron heating, preferentially in the direction perpendicular to the local magnetic field. Secondary waves are generated within the ULF waveforms, including whistler waves near half of the electron cyclotron frequency, high‐frequency electrostatic waves, and magnetosonic whistler waves. The work improves the understanding of the nature of 3‐s ULF waves and the associated wave‐particle interaction. 
    more » « less
  2. Abstract Using the global Lagrangian version of the piecewise parabolic method‐magnetohydrodynamic (PPMLR‐MHD) model, we simulate two consecutive storms in December 2015, a moderate storm on 14–15 December and a strong storm on 19–22 December, and calculate the radial diffusion coefficients (DLL) from the simulated ultralow frequency waves. We find that even though the strong storm leads to more enhancedBzandEφpower than the moderate storm, the two storms share in common a lot of features on the azimuthal mode structure and power spectrum of ultralow frequency waves. For both storms, the totalBzandEφpower is better correlated with the solar wind dynamic pressure in the storm initial phase and more correlated withAEindex in the recovery phase.Bzwave power is shown to be mostly distributed in low mode numbers, whileEφpower spreads over a wider range of modes. Furthermore, theBzandEφpower spectral densities are found to be higher at higherLregions, with a strongerLdependence in theBzspectra. The estimatedDLLbased on MHD fields shows that inside the magnetopause, the contribution from electric fields is larger than or comparable to that from magnetic fields, and our event‐specific MHD‐basedDLLcan be smaller than some previous empiricalDLLestimations by more than an order of magnitude. At last, by validating against in situ observations from Magnetospheric Multiscale spacecraft, our MHD results are found to generally well reproduce the totalBzfields and wave power for both storms, while theEφpower is underestimated in the MHD simulations. 
    more » « less
  3. Abstract Models invoking magnetic reconnection as the particle acceleration mechanism within relativistic jets often adopt a gradual energy dissipation profile within the jet. However, such a profile has yet to be reproduced in first-principles simulations. Here we perform a suite of 3D general relativistic magnetohydrodynamic simulations of post–neutron star merger disks with an initially purely toroidal magnetic field. We explore the variations in both the microphysics (e.g., nuclear recombination, neutrino emission) and system parameters (e.g, disk mass). In all of our simulations, we find the formation of magnetically striped jets. The stripes result from the reversals in the poloidal magnetic flux polarity generated in the accretion disk. The simulations display large variations in the distributions of stripe duration,τ, and power, 〈PΦ〉. We find that more massive disks produce more powerful stripes, the most powerful of which reaches 〈PΦ〉 ∼ 1049erg s−1atτ∼ 20 ms. The power and variability that result from the magnetic reconnection of the stripes agree with those inferred in short-duration gamma-ray bursts. We find that the dissipation profile of the cumulative energy is roughly a power law in both radial distance,z, andτ, with a slope in the range of ∼1.7–3; more massive disks display larger slopes. 
    more » « less
  4. ABSTRACT Ternary block copolymer (BCP)‐homopolymer (HP) blends offer a simple method for tuning nanostructure sizes to meet application‐specific demands. Comprehensive dissipative particle dynamic (DPD) simulations were performed to study the impact of polymer interactions, molecular weight, and HP volume fraction (φHP) on symmetric ternary blend morphological stability and domain spacing. DPD reproduces key features of the experimental phase diagram, including lamellar domain swelling with increasingφHP, the formation of an asymmetric bicontinuous microemulsion at a critical HP concentration , and macrophase separation with further HP addition. Simulation results matched experimental values for and lamellar swelling as a function of HP to BCP chain length ratio,α = NHP/NBCP. Structural analysis of blends with fixedφHPbut varyingαconfirmed that ternary blends follow the wet/dry brush model of domain swelling with the miscibility of HPs and BCPs depending onα. Longer HPs concentrate in the center of domains, boosting their swelling efficiencies compared to shorter chains. These results advance our understanding of BCP‐HP blend phase behavior and demonstrate the value of DPD for studying polymeric blends. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys.2019,57, 794–803 
    more » « less
  5. <bold>Summary</bold> Cytosolic calcium concentration ([Ca2+]cyt) and heterotrimeric G‐proteins are universal eukaryotic signaling elements. In plant guard cells, extracellular calcium (Cao) is as strong a stimulus for stomatal closure as the phytohormone abscisic acid (ABA), but underlying mechanisms remain elusive. Here, we report that the sole Arabidopsis heterotrimeric Gβ subunit,AGB1, is required for four guard cell Caoresponses: induction of stomatal closure; inhibition of stomatal opening; [Ca2+]cytoscillation; and inositol 1,4,5‐trisphosphate (InsP3) production. Stomata in wild‐type Arabidopsis (Col) and in mutants of the canonical Gα subunit,GPA1, showed inhibition of stomatal opening and promotion of stomatal closure by Cao. By contrast, stomatal movements ofagb1mutants andagb1/gpa1double‐mutants, as well as those of theagg1agg2 Gγ double‐mutant, were insensitive to Cao. These behaviors contrast withABA‐regulated stomatal movements, which involveGPA1 andAGB1/AGG3 dimers, illustrating differential partitioning of G‐protein subunits among stimuli with similar ultimate impacts, which may facilitate stimulus‐specific encoding.AGB1knockouts retained reactive oxygen species andNOproduction, but lostYC3.6‐detected [Ca2+]cytoscillations in response to Cao, initiating only a single [Ca2+]cytspike. Experimentally imposed [Ca2+]cytoscillations restored stomatal closure inagb1. Yeast two‐hybrid and bimolecular complementation fluorescence experiments revealed thatAGB1 interacts with phospholipase Cs (PLCs), and Caoinduced InsP3 production in Col but not inagb1. In sum, G‐protein signaling viaAGB1/AGG1/AGG2 is essential for Cao‐regulation of stomatal apertures, and stomatal movements in response to Caoapparently require Ca2+‐induced Ca2+release that is likely dependent on Gβγ interaction withPLCs leading to InsP3 production. 
    more » « less