skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Holding it together: noncovalent cross-linking strategies for ionogels and eutectogels
When a hydrogel simply won’t cut it – either because it dries out too quickly, or it does not tolerate more than roughly one volt when applied in an electrochemical device – where is the savvy materials researcher to turn? This is where two important classes of nonaqueous gel counterparts, known as ionogels and eutectogels, can truly shine. Replacing the aqueous liquid phase of a hydrogel with either an ionic liquid (IL) or a deep eutectic solvent (DES) allows one to realize an array of versatile gel electrolyte materials that offer outstanding nonvolatility, wider windows of electrochemical stability, reasonably high ionic conductivity, and nearly unlimited chemical design possibilities. In addition to choosing a specific IL or DES, there are a myriad of options when it comes to constructing a solid, three-dimensional, volume-spanning network (or scaffold) that will support the nonaqueous liquid phase of an ionogel or eutectogel. In this focused review, several recent approaches to forming these gels using noncovalent scaffold assembly and cross-linking are examined, and the primary noncovalent interactions responsible ( e.g. hydrogen bonding, solvophobicity, coulombic interactions) are identified. Noncovalent scaffold assembly in nonaqueous, ion-dense electrolytes often leads to supramolecular gel materials that can exhibit extreme stretchability, good toughness, and an ability to self-heal in many cases. After reviewing several strategies that have been recently employed for creating ionogels and eutectogels, a brief inspection of some motivating noncovalently cross-linked scaffolds reported for hydrogels is presented with the hopes that these may provide inspiration for the future design of novel ionogels and eutectogels by the materials research community.  more » « less
Award ID(s):
1802729
PAR ID:
10375758
Author(s) / Creator(s):
Date Published:
Journal Name:
Materials Advances
ISSN:
2633-5409
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Polymer gel electrolytes (PGE) have seen a renewed interest in their development because they have high ionic conductivities but low electrochemical degradation and flammability. PGEs are formed by mixing a liquid lithium-ion electrolyte with a polymer at a sufficiently large concentration to form a gel. PGEs have been extensively studied, but the direct connection between their microscopic structure and macroscopic properties remains controversial. For example, it is still unknown whether the polymer in the PGE acts as an inert, stabilizing scaffold for the electrolyte or it interacts with the ionic components. Here, a PGE composed of a prototypical lithium-carbonate electrolyte and polyacrylonitrile (PAN) is pursued at both microscopic and macroscopic levels. Specifically, this study focused on describing the microscopic and macroscopic changes in the PGE at different polymer concentrations. The results indicated that the polymer-ion and polymer–polymer interactions are strongly dependent on the concentration of the polymer and the lithium salt. In particular, the polymer interacts with itself at very high PAN concentrations (10% weight) resulting in a viscous gel. However, the conductivity and dynamics of the electrolyte liquid components are significantly less affected by the addition of the polymer. The observations are explained in terms of the PGE structure, which transitions from a polymer solution to a gel, containing a polymer matrix and disperse electrolyte, at low and high PAN concentrations, respectively. The results highlight the critical role that the polymer concentration plays in determining both the macroscopic properties of the system and the molecular structure of the PGE. 
    more » « less
  2. The roles of the ionic liquid (IL), 1-ethyl-3-methylimidazolium tetrafluoroborate ([EMIM][BF4]), and water in controlling the mechanism, energetics, and electrocatalytic activity of CO2 reduction to CO on silver in nonaqueous electrolytes were investigated. The first electron transfer occurs to CO2 at reduced overpotentials when it is trapped between the planes of the [EMIM]+ ring and the electrode surface due to cation reorientation as determined from voltammetry, in situ surface-enhanced Raman spectroscopy, and density functional theory calculations. Within this interface, water up to 0.5 M does not induce significant Faradaic activity, opposing the notion of it being a free proton source. Instead, water acts as a hydrogen bond donor, and the proton is sourced from [EMIM]+. Furthermore, this study demonstrates that alcohols with varying acidities tune the hydrogen bonding network in the interfacial microenvironment to lower the energetics required for CO2 reduction. The hydrogen bonding suppresses the formation of inactive carboxylate species, thus preserving the catalytic activity of [EMIM]+. The ability to tune the hydrogen bonding network opens new avenues for advancing IL-mediated electrocatalytic reactions in nonaqueous electrolytes. 
    more » « less
  3. Development of biocomposite scaffolds has gained tremendous attention due to their potential for tissue regeneration. However, most scaffolds often contain animal-derived collagen that may elicit an immunological response, necessitating the development of new biomaterials. Herein, we developed a new collagen-like peptide,(Pro-Ala-His)10 (PAH)10, and explored its ability to be utilized as a functional biomaterial by incorporating it with a newly synthesized peptide-based self-assembled gel. The gel was prepared by conjugating a pectin derivative, galataric acid, with a pro-angiogenic peptide (LHYQDLLQLQY) and further functionalized with a cortistatin-derived peptide, (Phe-Trp-Lys-Thr)4 (FWKT)4, and the bio-ionic liquid choline acetate. The self-assembly of (PAH)10 and its interactions with the galactarate-peptide conjugates were examined using replica exchange molecular dynamics (REMD) simulations. Results revealed the formation of a multi-layered scaffold, with enhanced stability at higher temperatures. We then synthesized the scaffold and examined its physicochemical properties and its ability to integrate with aortic smooth muscle cells. The scaffold was further utilized as a bioink for bioprinting to form three-dimensional cell-scaffold matrices. Furthermore, the formation of actin filaments and elongated cell morphology was observed. These results indicate that the (PAH)10 hybrid scaffold provides a suitable environment for cell adhesion, proliferation and growth, making it a potentially valuable biomaterial for tissue engineering. 
    more » « less
  4. A diode is fabricated using poly(3,4‐ethylenedioxythiophene) doped with poly(styrene sulfonic acid) (PEDOT‐PSS) and n‐doped Si. Using an ionic liquid (IL) gel as the gate dielectric, the diode rectification ratio is tunable up to four orders of magnitude at very low operating voltages. Both p–n and Schottky type diodes are observed in the same device depending on the polarity of the gate voltage. IL‐gated electrostatic/electrochemical doping in PEDOT‐PSS is believed to be responsible for this switch. The turn‐on voltage in the first quadrant of the current–voltage (I–V) curve for the p–n diode is in the range 0.2–0.4 V. The Schottky diode operates in the third quadrant. This is the first report on a tunable diode using an IL to control its operation, and the low operating voltages make these diodes excellent candidates for use in reduced power consumption electronics. 
    more » « less
  5. This article describes a theoretical and computational study of the dynamical assembly of a protein shell around a complex consisting of many cargo molecules and long, flexible scaffold molecules. Our study is motivated by bacterial microcompartments, which are proteinaceous organelles that assemble around a condensed droplet of enzymes and reactants. As in many examples of cytoplasmic liquid-liquid phase separation, condensation of the microcompartment interior cargo is driven by flexible scaffold proteins that have weak multivalent interactions with the cargo. Our results predict that the shell size, amount of encapsulated cargo, and assembly pathways depend sensitively on properties of the scaffold, including its length and valency of scaffold-cargo interactions. Moreover, the ability of self-assembling protein shells to change their size to accommodate scaffold molecules of different lengths depends crucially on whether the spontaneous curvature radius of the protein shell is smaller or larger than a characteristic elastic length scale of the shell. Beyond natural microcompartments, these results have important implications for synthetic biology efforts to target alternative molecules for encapsulation by microcompartments or viral shells. More broadly, the results elucidate how cells exploit coupling between self-assembly and liquid-liquid phase separation to organize their interiors. 
    more » « less