skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Computational predictions on Brønsted acidic ionic liquid-catalyzed carbon dioxide conversion to five-membered heterocyclic carbonyl derivatives
Experimentally conducted reactions between CO 2 and various substrates ( i.e. , ethylenediamine (EDA), ethanolamine (ETA), ethylene glycol (EG), mercaptoethanol (ME), and ethylene dithiol (EDT)) are considered in a computational study. The reactions were previously conducted under harsh conditions utilizing toxic metal catalysts. We computationally utilize Brønsted acidic ionic liquid (IL) [Et 2 NH 2 ]HSO 4 as a catalyst aiming to investigate and propose ‘greener’ pathways for future experimental studies. Computations show that EDA is the best to fixate CO 2 among the tested substrates: the nucleophilic EDA attack on CO 2 is calculated to have a very small energy barrier to overcome (TS1EDA, Δ G ‡ = 1.4 kcal mol −1 ) and form I1EDA (carbamic acid adduct). The formed intermediate is converted to cyclic urea (PEDA, imidazolidin-2-one) via ring closure and dehydration of the concerted transition state (TS2EDA, Δ G ‡ = 32.8 kcal mol −1 ). Solvation model analysis demonstrates that nonpolar solvents (hexane, THF) are better for fixing CO 2 with EDA. Attaching electron-donating and -withdrawing groups to EDA does not reduce the energy barriers. Modifying the IL via changing the anion part (HSO 4 − ) central S atom with 6 A and 5 A group elements (Se, P, and As) shows that a Se-based IL can be utilized for the same purpose. Molecular dynamics (MD) simulations reveal that the IL ion pairs can hold substrates and CO 2 molecules via noncovalent interactions to ease nucleophilic attack on CO 2 .  more » « less
Award ID(s):
2152633
PAR ID:
10412905
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Physical Chemistry Chemical Physics
Volume:
25
Issue:
12
ISSN:
1463-9076
Page Range / eLocation ID:
8624 to 8630
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Reaction of {LiC6H2−2,4,6‐Cyp3⋅Et2O}2(Cyp=cyclopentyl) (1) of the new dispersion energy donor (DED) ligand, 2,4,6‐triscyclopentylphenyl with SnCl2afforded a mixture of the distannene {Sn(C6H2−2,4,6‐Cyp3)2}2(2), and the cyclotristannane {Sn(C6H2−2,4,6‐Cyp3)2}3(3).2is favored in solution at higher temperature (345 K or above) whereas3is preferred near 298 K. Van't Hoff analysis revealed the3to2conversion has a ΔH=33.36 kcal mol−1and ΔS=0.102 kcal mol−1 K−1, which gives a ΔG300 K=+2.86 kcal mol−1, showing that the conversion of3to2is an endergonic process. Computational studies show that DED stabilization in3is −28.5 kcal mol−1per {Sn(C6H2−2,4,6‐Cyp3)2unit, which exceeds the DED energy in2of −16.3 kcal mol−1per unit. The data clearly show that dispersion interactions are the main arbiter of the3to2equilibrium. Both2and3possess large dispersion stabilization energies which suppress monomer dissociation (supported by EDA results). 
    more » « less
  2. Rubisco is the enzyme responsible for CO2 fixation in nature, and it is activated by CO2 addition to the amine group of its lysine 201 side chain. We are designing rubisco-based biomimetic systems for reversible CO2 capture from ambient air. The oligopeptide biomimetic capture systems are employed in aqueous solution. To provide a solid foundation for the experimental solution-phase studies of the CO2 capture reaction, we report here the results of computational studies of the thermodynamics of CO2 capture by small alkylamines in aqueous solution. We studied CO2 addition to methyl-, ethyl-, propyl-, and butylamine with the consideration of the full conformational space for the amine and the corresponding carbamic acids and with the application of an accurate solvation model for the potential energy surface analyses. The reaction energies of the carbamylation reactions were determined based on just the most stable structures (MSS) and based on the ensemble energies computed with the Boltzmann distribution (BD), and it is found that ΔGBD ≈ ΔGMSS. The effect of the proper accounting for the molecular translational entropies in solution with the Wertz approach are much more significant, and the free energy of the capture reactions ΔWABD is more negative by 2.9 kcal/mol. Further accounting for volume effects in solution results in our best estimates for the reaction energies of the carbamylation reactions of ΔWABD = −5.4 kcal/mol. The overall difference is ΔGBD – ΔWABD = 2.4 kcal/mol for butylamine carbamylation. The full conformational space analyses inform about the conformational isomerizations of carbamic acids, and we determined the relevant rotational profiles and their transition-state structures. Our detailed studies emphasize that, more generally, solution-phase reaction energies should be evaluated with the Helmholtz free energy and can be affected substantially by solution effects on translational entropies. 
    more » « less
  3. Herein reported is a strategy for constructing vicinal 4°/3° carbons via reductive Cope rearrangement. Substrates have been designed which exhibit Cope rearrangement kinetic barriers of ∼23 kcal mol −1 with isoenergetic favorability (Δ G ∼ 0). These fluxional/shape-shifting molecules can be driven forward by chemoselective reduction to useful polyfunctionalized building blocks. 
    more » « less
  4. ABSTRACT Access to benzofuran‐2(3H)‐one derivatives from readily available substrates under mild conditions is crucial in the pharmaceutical and plastics industries. We identified (Z)‐3‐(2‐phenylhydrazineylidene)benzofuran‐2(3H)‐one (P) during the recrystallization of (E)‐2‐(2,2‐dichloro‐1‐(phenyldiazenyl)vinyl)phenol using a 96% ethanol solution. The mechanism of the unexpected substrate conversion leading toPis investigated using density functional calculations. The computations revealed that ethanol is required to initiate the reaction viaTS1E, which involves a concerted deprotonation of ethanol by the basic diaza group of the substrate and an ethoxy group attacking the electrophilic center (Cl2C), with an energy barrier of 28.3 kcal/mol. The resulting intermediate (I1E) is calculated to be unstable and can yield a cyclic chloroacetal adduct with a lower energy barrier of 2.2 kcal/mol via the ring‐closure transition state (TS2E). In the absence of water, the next steps are impossible because water is required to cleave the ether bond, yieldingP. A small amount of water (4% of the recrystallization solvent) can promote further transformation ofI2Evia the transition statesTS3E(∆G = 11.1 kcal/mol) andTS4E(∆G = 10.5 kcal/mol). A comparison of the ethanol/water‐ and only water‐promoted free energy profiles shows that the presence of ethanol is crucial for lowering the energy barriers (by about 5 kcal/mol) for the initial two steps leading to the cyclic chloroacetal (I2E), whereas water is then required to initiate product formation. 
    more » « less
  5. Structural characterization of the complex [B(β-pinane) 3 ] (1) reveals non-covalent H⋯H contacts that are consistent with the generation of London dispersion energies involving the β-pinane ligand frameworks. The homolytic fragmentations of 1 , and camphane and sabinane analogues ([B(camphane) 3 ] (2) and [B(sabinane) 3 ] (3)) were studied computationally. Isodesmic exchange results showed that London dispersion interactions are highly dependent on the terpene's stereochemistry, with the β-pinane framework providing the greatest dispersion free energy (Δ G = −7.9 kcal mol −1 ) with Grimme's dispersion correction (D3BJ) employed. PMe 3 was used to coordinate to [B(β-pinane) 3 ], giving the complex [Me 3 P–B(β-pinane) 3 ] ( 4 ), which displayed a dynamic coordination equilibrium in solution. The association process was found to be slightly endergonic at 302 K (Δ G = +0.29 kcal mol −1 ). 
    more » « less