skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: In vivo Tissue Evaluation Reveals Improvements in Explicit PDT Dosimetry
Abstract Progress is needed before explicit photodynamic therapy (PDT) dosimetry can treat peritoneal carcinomatosis and yet spare all healthy tissue. A report by Cengel et al. in this issue ofPhotochemistry & Photobiologyon tissue evaluation in a canine model may bring that goal a step closer and may even bedogma‐changing.  more » « less
Award ID(s):
1856765
PAR ID:
10375778
Author(s) / Creator(s):
 
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Photochemistry and Photobiology
Volume:
96
Issue:
2
ISSN:
0031-8655
Page Range / eLocation ID:
p. 437-439
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Planar structures dramatically increase the surface‐area‐to‐volume ratio, which is critically important for multicellular organisms. In this study, we utilize naturally occurring phenotypic variation among threeSansivieriaspecies (Asperagaceae) to investigate leaf margin expression patterns that are associated with mediolateral and adaxial/abaxial development. We identified differentially expressed genes (DEGs) between center and margin leaf tissues in two planar‐leaf speciesSansevieria subspicataandSansevieria trifasciataand compared these with expression patterns within the cylindrically leavedSansevieria cylindrica. TwoYABBYfamily genes, homologs ofFILAMENTOUS FLOWERandDROOPING LEAF, are overexpressed in the center leaf tissue in the planar‐leaf species and in the tissue of the cylindrical leaves. As mesophyll structure does not indicate adaxial versus abaxial differentiation, increased leaf thickness results in more water‐storage tissue and enhances resistance to aridity. This suggests that the cylindrical‐leaf inS. cylindricais analogous to the central leaf tissue in the planar‐leaf species. Furthermore, the congruence of the expression patterns of theseYABBYgenes inSansevieriawith expression patterns found in other unifacial monocot species suggests that patterns of parallel evolution may be the result of similar solutions derived from a limited developmental toolbox. 
    more » « less
  2. Abstract Birds are known to act as potential vectors for the exogenous dispersal of bryophyte diaspores. Given the totipotency of vegetative tissue of many bryophytes, birds could also contribute to endozoochorous bryophyte dispersal. Research has shown that fecal samples of the upland goose (Chloephaga picta) and white‐bellied seedsnipe (Attagis malouinus) contain bryophyte fragments. Although few fragments from bird feces have been known to regenerate, the evidence for the viability of diaspores following passage through the bird intestinal tract remains ambiguous. We evaluated the role of endozoochory in these same herbivorous and sympatric bird species in sub‐Antarctic Chile. We hypothesized that fragments of bryophyte gametophytes retrieved from their feces are viable and capable of regenerating new plant tissue. Eleven feces disk samples containing undetermined moss fragments fromC. picta(N = 6) andA. malouinus(N = 5) and six moss fragment samples from wild‐collected mosses (Conostomumtetragonum,Syntrichiarobusta, andPolytrichumstrictum) were grown ex situ in peat soil and in vitro using a agar Gamborg medium. After 91 days, 20% of fragments fromA. malouinusfeces, 50% of fragments fromC. pictafeces, and 67% of propagules from wild mosses produced new growth. The fact that moss diaspores remained viable and can regenerate under experimental conditions following the passage through the intestinal tracts of these robust fliers and altitudinal and latitudinal migrants suggests that sub‐Antarctic birds might play a role in bryophyte dispersal. This relationship may have important implications in the way bryophytes disperse and colonize habitats facing climate change. 
    more » « less
  3. Abstract BackgroundThe growth of most bony tuberosities, like the deltoid tuberosity (DT), rely on the transmission of muscle forces at the tendon‐bone attachment during skeletal growth. Tuberosities distribute muscle forces and provide mechanical leverage at attachment sites for joint stability and mobility. The genetic factors that regulate tuberosity growth remain largely unknown. In mouse embryos with global deletion offibroblast growth factor 9(Fgf9), the DT size is notably enlarged. In this study, we explored the tissue‐specific regulation of DT size using both global and targeted deletion ofFgf9. ResultsWe showed that cell hypertrophy and mineralization dynamics of the DT, as well as transcriptional signatures from skeletal muscle but not bone, were influenced by the global loss ofFgf9. Loss ofFgf9during embryonic growth led to increased chondrocyte hypertrophy and reduced cell proliferation at the DT attachment site. This endured hypertrophy and limited proliferation may explain the abnormal mineralization patterns and locally dysregulated expression of markers of endochondral development inFgf9nullattachments. We then showed that targeted deletion ofFgf9in skeletal muscle leads to postnatal enlargement of the DT. ConclusionTaken together, we discovered thatFgf9may play an influential role in muscle‐bone cross‐talk during embryonic and postnatal development. 
    more » « less
  4. Abstract Coral diseases have increased in frequency and intensity around the tropics worldwide. However, in many cases, little is known about their etiology.Montiporawhite syndrome (MWS) is a common disease affecting the coralMontipora capitata, a major reef builder in Hawai'i. ChronicMontiporawhite syndrome (cMWS) is a slow‐moving form of the disease that affectsM. capitatathroughout the year. The effects of this chronic disease on coral immunology and microbiology are currently unknown. In this study, we use prophenoloxidase immune assays and 16S rRNA gene amplicon sequencing to characterize the microbiome and immunological response associated with cMWS. Our results show that immunological and microbiological responses are highly localized. Relative to diseased samples, apparently healthy portions of cMWS corals differed in immune activity and in the relative abundance of microbial taxa. Coral tissues with cMWS showed decreased tyrosinase‐type catecholase and tyrosinase‐type cresolase activity and increased laccase‐type activity. Catecholase and cresolase activity were negatively correlated across all tissue types with microbiome richness. The localized effect of cMWS on coral microbiology and immunology is probably an important reason for the slow progression of the disease. This local confinement may facilitate interventions that focus on localized treatments on tissue types. This study provides an important baseline to understand the interplay between the microbiome and immune system and the mechanisms used by corals to manage chronic microbial perturbations associated with white syndrome. 
    more » « less
  5. In plants, the robust maintenance of tissue structure is crucial to supporting its functionality. The multi-layered shoot apical meristem (SAM) ofArabidopsis,containing stem cells,is an approximately radially symmetric tissue whose shape and structure is maintained throughout the life of the plant. In this paper, a new biologically calibrated pseudo-three-dimensional (P3D) computational model of a longitudinal section of the SAM is developed. It includes anisotropic expansion and division of cells out of the cross-section plane, as well as representation of tension experienced by the SAM epidermis. Results from the experimentally calibrated P3D model provide new insights into maintenance of the structure of the SAM epidermal cell monolayer under tension and quantify dependence of epidermal and subepidermal cell anisotropy on the amount of tension. Moreover, the model simulations revealed that out-of-plane cell growth is important in offsetting cell crowding and regulating mechanical stresses experienced by tunica cells. Predictive model simulations show that tension-determined cell division plane orientation in the apical corpus may be regulating cell and tissue shape distributions needed for maintaining structure of the wild-type SAM. This suggests that cells' responses to local mechanical cues may serve as a mechanism to regulate cell- and tissue-scale patterning. 
    more » « less