skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Turbulence Structures in the Very Stable Boundary Layer Under the Influence of Wind Profile Distortion
Abstract In very stable boundary layers (VSBL), a “cocktail” of submeso motions routinely result in elevated mean wind speed maxima above the ground, acting as a new source of turbulence generation. This new source of turbulent kinetic energy enhances turbulent mixing and causes mean wind profile distortion (WPD). As a results, this transient distortion in the wind profile adjusts the classical log‐law. Addressing how WPD‐induced turbulence regulates flow structures, turbulent fluxes, and transitions in stability regimes across layers remains a challenge. Eddy covariance data measured at four levels on a 62‐m tower are employed to address these questions. It is shown that the WPD initiates large turbulent eddies that penetrate downward, leading to enhanced vertical mixing and comparable turbulent transport efficiencies across layers. As a consequence, turbulence intensity and fluxes are increased. As the WPD is intensified, turbulent fluxes and turbulent flux transport caused by large eddies are also enhanced, leading to a transition from very stable to weakly stable regimes. Due to the influence of WPD‐induced large eddies, the large‐eddy turbulent Prandtl number does not deviate appreciably from unity and the partitioning between turbulent kinetic and potential energies is linearly related to the gradient Richardson number.  more » « less
Award ID(s):
1853354
PAR ID:
10375828
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
Volume:
127
Issue:
20
ISSN:
2169-897X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The surface wind structure and vertical turbulent transport processes in the eyewall of hurricane Isabel (2003) are investigated using six large-eddy simulations (LESs) with different horizontal grid spacing and three-dimensional (3D) sub-grid scale (SGS) turbulent mixing models and a convection permitting simulation that uses a coarser grid spacing and one-dimensional vertical turbulent mixing scheme. The mean radius-height distribution of storm tangential wind and radial flow, vertical velocity structure, and turbulent kinetic energy and momentum fluxes in the boundary layer generated by LESs are consistent with those derived from historical dropsonde composites, Doppler radar, and aircraft measurements. Unlike the convection permitting simulation that produces storm wind fields lacking small-scale disturbances, all LESs are able to produce sub-kilometer and kilometer scale eddy circulations in the eyewall. The inter-LES differences generally reduce with the decrease of model grid spacing. At 100-m horizontal grid spacing, the vertical momentum fluxes induced by the model-resolved eddies and the associated eddy exchange coefficients in the eyewall simulated by the LESs with different 3D SGS mixing schemes are fairly consistent. Although with uncertainties, the decomposition in terms of eddy scales suggests that sub-kilometer eddies are mainly responsible for the vertical turbulent transport within the boundary layer (~1 km depth following the conventional definition) whereas eddies greater than 1 km become the dominant contributors to the vertical momentum transport above the boundary layer in the eyewall. The strong dependence of vertical turbulent transport on eddy scales suggests that the vertical turbulent mixing parameterization in mesoscale simulations of tropical cyclones is ultimately a scale-sensitive problem. 
    more » « less
  2. null (Ed.)
    Abstract Large-eddy simulations are used to investigate the influence of a horizontal frontal zone, represented by a stationary uniform background horizontal temperature gradient, on the wind- and wave-driven ocean surface boundary layers. In a frontal zone, the temperature structure, the ageostrophic mean horizontal current, and the turbulence in the ocean surface boundary layer all change with the relative angle among the wind and the front. The net heating and cooling of the boundary layer could be explained by the depth-integrated horizontal advective buoyancy flux, called the Ekman Buoyancy Flux (or the Ekman-Stokes Buoyancy Flux if wave effects are included). However, the detailed temperature profiles are also modulated by the depth-dependent advective buoyancy flux and submesoscale eddies. The surface current is deflected less (more) to the right of the wind and wave when the depth-integrated advective buoyancy flux cools (warms) the ocean surface boundary layer. Horizontal mixing is greatly enhanced by submesoscale eddies. The eddy-induced horizontal mixing is anisotropic and is stronger to the right of the wind direction. Vertical turbulent mixing depends on the superposition of the geostrophic and ageostrophic current, the depth-dependent advective buoyancy flux, and submesoscale eddies. 
    more » « less
  3. Abstract In the inner core of a tropical cyclone, turbulence not only exists in the boundary layer (BL) but can also be generated above the BL by eyewall and rainband clouds. Thus, the treatment of vertical turbulent mixing must go beyond the conventional scope of the BL. The turbulence schemes formulated based on the turbulent kinetic energy (TKE) are attractive as they are applicable to both deep and shallow convection regimes in the tropical cyclone (TC) inner core provided that the TKE production and dissipation can be appropriately determined. However, TKE schemes are not self-closed. They must be closed by an empirically prescribed vertical profile of mixing length. This motivates this study to investigate the sensitivity of the simulated TC intensification to the sloping curvature and asymptotic length scale of mixing length, the two parameters that determine the vertical distribution of a prescribed mixing length. To tackle the problem, both idealized and real-case TC simulations are performed. The results show that the simulated TC intensification is sensitive to the sloping curvature of mixing length but only exhibits marginal sensitivity to the asymptotic length scale. The underlying reasons for such sensitivities are explored analytically based on the Mellor and Yamada level-2 turbulence model and the analyses of azimuthal-mean tangential wind budget. The results highlight the uncertainty and importance of mixing length in the numerical prediction of TCs and suggest that future research should focus on searching for physical constraints on mixing length, particularly in the low- to midtroposphere, using observations and large-eddy simulations. Significance StatementThe parametric representation of subgrid-scale turbulent mixing is one of the major sources of uncertainty in numerical predictions of tropical cyclones (TCs). This study investigates how the numerical prediction of TC intensification is affected by the turbulent mixing length, a length scale that is required to close a turbulence scheme formulated based on the turbulent kinetic energy (TKE). The research highlights the uncertainty and importance of mixing length in numerical prediction of TCs and suggests that future research should focus on searching for physical constraints on the mixing length, particularly in the low- to midtroposphere, using observations and large-eddy simulations. 
    more » « less
  4. Abstract We took field observations on the shallow shoals of South San Francisco Bay to examine how sediment‐induced stratification affects the mean flow and mixing of momentum and sediment throughout the water column. A Vectrino Profiler measured near‐bed velocity and suspended sediment concentration profiles, which we used to calculate profiles of turbulent sediment and momentum fluxes. Additional turbulence statistics were calculated using data from acoustic Doppler velocimeters placed throughout the water column. Results showed that sediment‐induced stratification, which was set up by strong near‐bed wave shear, can reduce the frictional bottom drag felt by the mean flow. Measured turbulence statistics suggest that this drag reduction is caused by stratification suppressing near‐bed turbulent fluxes and reducing turbulent kinetic energy dissipation. Turbulent sediment fluxes, however, were not shown to be limited by sediment‐induced stratification. Finally, we compared our results to a common model parameterization which characterizes stratification through a stability parameter modification to the turbulent eddy viscosity and suggest a new nondimensional parameter that may be better suited to represent stratification when modeling oscillatory boundary layer flows. 
    more » « less
  5. The mean state of the atmosphere and ocean is set through a balance between external forcing (radiation, winds, heat and freshwater fluxes) and the emergent turbulence, which transfers energy to dissipative structures. The forcing gives rise to jets in the atmosphere and currents in the ocean, which spontaneously develop turbulent eddies through the baroclinic instability. A critical step in the development of a theory of climate is to properly include the eddy-induced turbulent transport of properties like heat, moisture, and carbon. In the linear stages, baroclinic instability generates flow structures at the Rossby deformation radius, a length scale of order 1,000 km in the atmosphere and 100 km in the ocean, smaller than the planetary scale and the typical extent of ocean basins, respectively. There is, therefore, a separation of scales between the large-scale gradient of properties like temperature and the smaller eddies that advect it randomly, inducing effective diffusion. Numerical solutions show that such scale separation remains in the strongly nonlinear turbulent regime, provided there is sufficient drag at the bottom of the atmosphere and ocean. We compute the scaling laws governing the eddy-driven transport associated with baroclinic turbulence. First, we provide a theoretical underpinning for empirical scaling laws reported in previous studies, for different formulations of the bottom drag law. Second, these scaling laws are shown to provide an important first step toward an accurate local closure to predict the impact of baroclinic turbulence in setting the large-scale temperature profiles in the atmosphere and ocean. 
    more » « less