skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Cable Decoupling and Cable-Based Stiffening of Continuum Robots
Award ID(s):
2133019
PAR ID:
10375854
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Institute of Electrical and Electronics Engineers
Date Published:
Journal Name:
IEEE Access
Volume:
10
ISSN:
2169-3536
Format(s):
Medium: X Size: p. 104852-104862
Size(s):
p. 104852-104862
Sponsoring Org:
National Science Foundation
More Like this
  1. The addition of geometric reconfigurability in a cable driven parallel robot (CDPR) introduces kinematic redundancies which can be exploited for manipulating structural and mechanical properties of the robot through redundancy resolution. In the event of a cable failure, a reconfigurable CDPR (rCDPR) can also realign its geometric arrangement to overcome the effects of cable failure and recover the original expected trajectory and complete the trajectory tracking task. In this paper we discuss a fault tolerant control (FTC) framework that relies on an Interactive Multiple Model (IMM) adaptive estimation filter for simultaneous fault detection and diagnosis (FDD) and task recovery. The redundancy resolution scheme for the kinematically redundant CDPR takes into account singularity avoidance, manipulability and wrench quality maximization during trajectory tracking. We further introduce a trajectory tracking methodology that enables the automatic task recovery algorithm to consistently return to the point of failure. This is particularly useful for applications where the planned trajectory is of greater importance than the goal positions, such as painting, welding or 3D printing applications. The proposed control framework is validated in simulation on a planar rCDPR with elastic cables and parameter uncertainties to introduce modeled and unmodeled dynamics in the system as it tracks a complete trajectory despite the occurrence of multiple cable failures. As cables fail one by one, the robot topology changes from an over-constrained to a fully constrained and then an under-constrained CDPR. The framework is applied with a constant-velocity kinematic feedforward controller which has the advantage of generating steady-state inputs despite dynamic oscillations during cable failures, as well as a Linear Quadratic Regulator (LQR) feedback controller to locally dampen these oscillations. 
    more » « less
  2. We use the degree of the colored Jones knot polynomials to show that the crossing number of a (p,q)‐cable of an adequate knot with crossing number c is larger than q^2 c. As an application, we determine the crossing number of 2‐cables of adequate knots. We also determine the crossing number of the connected sum of any adequate knot with a 2‐cable of an adequate knot. 
    more » « less
  3. We give a classification of Legendrian torus links. Along the way, we give the first classification of infinite families of Legendrian links where some smooth symmetries of the link cannot be realized by Legendrian isotopies. We also give the first family of links that are non-destabilizable but do not have maximal \tb invariant and observe a curious distribution of Legendrian torus knots that can be realized as the components of a Legendrian torus link. This classification of Legendrian torus links leads to a classification of transversal torus links. We also give a classification of Legendrian and transversal cable links of knot types that are uniformly thick and Legendrian simple. Here we see some similarities with the classification of Legendrian torus links, but also some differences. In particular, we show that there are Legendrian representatives of cable links of any uniformly thick knot type for which no symmetries of the components can be realized by a Legendrian isotopy, others where only cyclic permutations of the components can be realized, and yet others where all smooth symmetries are realizable. 
    more » « less