skip to main content


Title: Peptide‐Reinforced Amphiphilic Polymer Conetworks
Abstract

Amphiphilic polymer conetworks (APCNs) are polymer networks composed of hydrophilic and hydrophobic chain segments. Their applications range from soft contact lenses to membranes and biomaterials. APCNs based on polydimethylsiloxane (PDMS) and poly(2‐hydroxyethyl acrylate) are flexible and elastic in the dry and swollen state. However, they are not good at resisting deformation under load, i.e., their toughness is low. A bio‐inspired approach to reinforce APCNs is presented based on the incorporation of poly(β‐benzyl‐L‐aspartate) (PBLA) blocks between cross‐linking points and PDMS chain segments. The mechanical properties of the resulting peptide‐reinforced APCNs can be tailored by the secondary structure of the peptide chains (β‐sheets or a mixture of α‐helices and β‐sheets). Compared to non‐reinforced APCNs, the peptide‐reinforced networks have higher extensibility (53 vs. up to 341%), strength (0.71 ± 0.16 vs. 22.28 ± 2.81 MPa), and toughness (0.10 ± 0.04 vs. up to 4.85 ± 1.32 MJ m−3), as measured in their dry state. The PBLA peptides reversibly toughen and reinforce the APCNs, while other key material properties of APCNs are retained, such as optical transparency and swellability in water and organic solvents. This paves the way for applications of APCNs that benefit from significantly increased mechanical properties.

 
more » « less
NSF-PAR ID:
10375920
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
Volume:
32
Issue:
51
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A polypeptide-based hydrogel system, when prepared from a diblock polymer with a ternary copolypeptide as one block, exhibited thermo-, mechano- and enzyme-responsive properties, which enabled the encapsulation of naproxen (Npx) during the sol–gel transition and its release in the gel state. Statistical terpolymerizations of l -alanine (Ala), glycine (Gly) and l -isoleucine (Ile) NCAs at a 1 : 1 : 1 feed ratio initiated by monomethoxy monoamino-terminated poly(ethylene glycol) afforded a series of methoxy poly(ethylene glycol)- block -poly( l -alanine- co -glycine- co - l -isoleucine) (mPEG- b -P(A-G-I)) block polymers. β-Sheets were the dominant secondary structures within the polypeptide segments, which facilitated a heat-induced sol-to-gel transition, resulting from the supramolecular assembly of β-sheets into nanofibrils. Deconstruction of the three-dimensional networks by mechanical force (sonication) triggered the reverse gel-to-sol transition. Certain enzymes could accelerate the breakdown of the hydrogel, as determined by in vitro gel weight loss profiles. The hydrogels were able to encapsulate and release Npx over 6 days, demonstrating the potential application of these polypeptide hydrogels as an injectable local delivery system for small molecule drugs. 
    more » « less
  2. Abstract

    Utilization of self‐healing chemistry to develop synthetic polymer materials that can heal themselves with restored mechanical performance and functionality is of great interest. Self‐healable polymer elastomers with tunable mechanical properties are especially attractive for a variety of applications. Herein, a series of urea functionalized poly(dimethyl siloxane)‐based elastomers (U‐PDMS‐Es) are reported with extremely high stretchability, self‐healing mechanical properties, and recoverable gas‐separation performance. Tailoring the molecular weights of poly(dimethyl siloxane) or weight ratio of elastic cross‐linker offers tunable mechanical properties of the obtained U‐PDMS‐Es, such as ultimate elongation (from 984% to 5600%), Young's modulus, ultimate tensile strength, toughness, and elastic recovery. The U‐PDMS‐Es can serve as excellent acoustic and vibration damping materials over a broad range of temperature (over 100 °C). The strain‐dependent elastic recovery behavior of U‐PDMS‐Es is also studied. After mechanical damage, the U‐PDMS‐Es can be healed in 120 min at ambient temperature or in 20 min at 40 °C with completely restored mechanical performance. The U‐PDMS‐Es are also demonstrated to exhibit recoverable gas‐separation functionality with retained permeability/selectivity after being damaged.

     
    more » « less
  3. Abstract

    Hydrogels, exhibiting wide applications in soft robotics, tissue engineering, implantable electronics, etc., often require sophisticately tailoring of the hydrogel mechanical properties to meet specific demands. For examples, soft robotics necessitates tough hydrogels; stem cell culturing demands various tissue‐matching modulus; and neuron probes desire dynamically tunable modulus. Herein, a strategy to broadly alter the mechanical properties of hydrogels reversibly via tuning the aggregation states of the polymer chains by ions based on the Hofmeister effect is reported. An ultratough poly(vinyl alcohol) (PVA) hydrogel as an exemplary material (toughness 150 ± 20 MJ m−3), which surpasses synthetic polymers like poly(dimethylsiloxane), synthetic rubber, and natural spider silk is fabricated. With various ions, the hydrogel's various mechanical properties are continuously and reversibly in situ modulated over a large window: tensile strength from 50 ± 9 kPa to 15 ± 1 MPa, toughness from 0.0167 ± 0.003 to 150 ± 20 MJ m−3, elongation from 300 ± 100% to 2100 ± 300%, and modulus from 24 ± 2 to 2500 ± 140 kPa. Importantly, the ions serve as gelation triggers and property modulators only, not necessarily required to remain in the gel, maintaining the high biocompatibility of PVA without excess ions. This strategy, enabling high mechanical performance and broad dynamic tunability, presents a universal platform for broad applications from biomedicine to wearable electronics.

     
    more » « less
  4. Abstract

    Poly(lactic acid) (PLA) is a commercially available bio‐based polymer that is a potential alternative to many commodity petrochemical‐based polymers. However, PLA's thermomechanical properties limit its use in many applications. Incorporating polymer‐grafted cellulose nanocrystals (CNCs) is one potential route to improving these mechanical properties. One key challenge in using these polymer‐grafted nanoparticles is to understand which variables associated with polymer grafting are most important for improving composite properties. In this work, poly(ethylene glycol)‐grafted CNCs are used to study the effects of polymer grafting density and molecular weight on the properties of PLA composites. All CNC nanofillers are found to reinforce PLA above the glass transition temperature, but non‐grafted CNCs and CNCs grafted with short PEG chains (<2 kg mol−1) are found to cause significant embrittlement, generally resulting in less than 3% elongation‐at‐break. By grafting higher molecular weight PEG (10 kg mol−1) onto the CNCs at a grafting density where the polymer chains are predicted to be in the semi‐dilute polymer brush conformation (~0.1 chains nm−2), embrittlement can be avoided.

     
    more » « less
  5. Abstract

    A versatile synthetic platform is reported that affords high molecular weight graft copolymers containing polydimethylsiloxane (PDMS) backbones and vinyl‐based polymer side chains with excellent control over molecular weight and grafting density. The synthetic approach leverages thiol‐ene click chemistry to attach an atom‐transfer radical polymerization (ATRP) initiator to a variety of commercially available poly(dimethylsiloxane‐co‐methylvinylsiloxane) backbones (PDMS‐co‐PVMS), followed by controlled radical polymerization with a wide scope of vinyl monomers. Selective degradation of the siloxane backbone with tetrabutylammonium fluoride confirmed the controlled nature of side‐chain growth via ATRP, yielding targeted side‐chain lengths for copolymers containing up to 50% grafting density and overall molecular weights in excess of 1 MDa. In addition, by using a mixture of thiols, grafting density and functionality can be further controlled by tuning initiator loading along the backbone. For example, solid‐state fluorescence of the graft copolymers was achieved by incorporating a thiol‐containing fluorophore along the siloxane backbone during the thiol‐ene click reaction. This simple synthetic platform provides facile control over the properties of a wide variety of grafted copolymers containing flexible PDMS backbones and vinyl polymer side chains.

     
    more » « less