skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Arylboration of Enecarbamates for the Synthesis of Borylated Saturated N‐Heterocycles
Abstract Two catalytic systems have been developed for the arylboration of endocyclic enecarbamates to deliver synthetically versatile borylated saturated N‐heterocycles in good regio‐ and diastereoselectivities. A Cu/Pd dual catalytic reaction enables the synthesis of borylated, α‐arylated azetidines, while a Ni‐catalysed arylboration reaction efficiently functionalizes 5‐, 6‐, and 7‐membered enecarbamates. In the case of the Cu/Pd‐system, a remarkable additive effect was identified that allowed for broader scope. The products are synthetically useful, as demonstrated by manipulations of the boronic ester to access biologically active compounds.  more » « less
Award ID(s):
1920026
PAR ID:
10375922
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
61
Issue:
46
ISSN:
1433-7851
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The development of pyridylidene‐Cu‐complexes and their application in Cu/Pd‐catalyzed heteroarylboration of alkenylheteroarenes is reported. The significance of 1,1′‐heteroarylalkanes as building blocks for drug discovery, as well as the straightforward and modular sequence to prepare the pyridylidene‐Cu‐complexes, makes this catalyst and it applications attractive for chemical synthesis. Furthermore, chiral variants of the pyridylidene‐Cu‐complexes have been prepared and utilized in the enantioselective arylboration of E‐alkenes, further demonstrating the value and potential of this class of catalysts. 
    more » « less
  2. Alkyl boronic acids and esters are versatile synthetic intermediates that generally require several steps to synthesize. Three-component alkene arylboration reactions allow for the rapid synthesis of alkyl boronic esters. Herein, we report the base-free aerobic Pd-catalyzed three-component alkene arylboration, which allows direct access, in a single step, to alkyl boronic esters from readily available precursors: aryl boronic acids, alkenes, and bis(pinacol)diboron. This approach allows for the formal insertion of an alkene into an Ar–B bond, and thus, generates an alkyl boronic ester from an aryl boronic acid. The reaction proceeds with both electron-rich and electron-deficient aryl boronic acids as well as strained cyclic, internal, and terminal olefins. The reactions are regioselective: 1,2-arylboration products are formed with strained cyclic alkenes and b-alkyl-styrenes while 1,1-arylboration products are generated from terminal alkenes. Forty-five examples are presented with isolated yields of the resulting alkyl boronic esters ranging from 20-74%, along with several examples demonstrating the synthetic utility of the products. Mechanistic investigations support that the catalytic cycle occurs through direct arylboration of the alkene. Further, p-benzyl intermediates form when possible, and the rate of borylation is increased with electron-rich arenes relative to electron-poor. Finally, we demonstrate that aryl boroxines, generated in situ, are essential for the transformation as they rapidly undergo base-free transmetalation with the proposed palladium peroxo intermediate. 
    more » « less
  3. Abstract Catalytic oxidation of tricyclic endo-norbornene-fused tetrahydrofuran with the bimetallic nanocluster Cu/Au-PVP in the presence of H2O2 or t-BuOOH as the oxidant leads to C–H bond oxidation adjacent to the ether function to give 4-oxa-tricyclo[5.2.1.0]-8,9-exo-epoxydecane, however, oxidation with Pd/Au-PVP takes place at the C=C double bond to give the same epoxide and the oxidative three-bond forming dimeric product, dodecahydro-1,4:6,9-dimethanodibenzofurano[2,3-b:7,8-b′]bisoxolane. Formation of the latter product suggests the involvement of a reactive Pd–C intermediate. Similarly, oxidative C–C bond-forming reactions are observed in cycloaddition reactions of N2-Boc-1,2,3,4-tetrahydro-γ-carbolines and 2,3-dihydroxybenzoic acid with Cu/Au-PVP (2–5 mol%) and H2O2 at 25 °C, providing two-bond-forming [4+2] cycloadducts. Under similar reaction conditions, Pd/Au-PVP did not produce the corresponding cycloadduct, indicating a need for complexation between Cu and the carboxylic acid group of 2,3-dihydroxybenzoic acid and the allylic amine function of the γ-carbolines during the cyclization reaction. The reported intermolecular coupling reactions using Pd/Au-PVP or Cu/Au-PVP nanocluster catalysts under oxidative conditions at 25 °C are unprecedented. 
    more » « less
  4. Abstract Two methods are reported for the 1,2‐ and 1,1‐arylboration of α‐methyl vinyl arenes. In the case of 1,2‐arylboration, the formation of a quaternary center occurred through a rare cross‐coupling reaction of a tertiary organometallic complex. 1,1‐Arylboration was enabled by catalyst optimization and occurred through a β‐hydride elimination/reinsertion cascade. Enantioselective variants of both processes are presented as well as mechanistic investigations. 
    more » « less
  5. Abstract Electrospray deposition of copper salt‐containing microdroplets onto the liquid surface of an electrically grounded reaction mixture leads to the formation of Cu nanoclusters, which then catalyze the azide‐alkyne cycloaddition (AAC) reaction to form triazoles. This method of in situ nanocatalyst preparation provided 17 times higher catalytic activity compared to that in the conventional catalytic reaction. The gentle landing of the Cu‐containing droplets onto the liquid surface forms a thin film of catalyst which promotes the heterogeneous AAC reaction while showing diffusion‐controlled kinetics. UV‐vis spectral characterization confirms that the catalyst is comprised of Cu nanoclusters. This unique catalytic strategy was validated using several substrates and the corresponding products were confirmed by tandem mass spectrometry (MS/MS) analysis. 
    more » « less